a marshall cavendish 51 computer course in weekiy parts

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

APPLICATIONS 38

DISK-EDITING UTILITIES 1608

Programs to allow you direct access to the bytes stored on a disk, for easy manipulation or retrieval of corrupted information

PERIPHERALS

MUSIC, MICROS AND MIDI 1616

The revolution in computer control of musical synthesizers, and how you can use your micro to provide a whole backing group

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index. For easy access to your growing collection, a cumulative index to the contents of each issue is contained on the inside back cover.

PICTURE CREDITS

Front cover, Graeme Harris. Pages 1589, 1590, 1591, 1593, 1594, 1595, Anni Axworthy. Pages 1597 to 1618, Graeme Harris. Pages 1618, 1619, Berry Fallon Design.
(C) Marshall Cavendish Limited 1985/6/7

All worldwide rights reserved.
The contents of this publication including software, codes, listings, graphics, illustrations and text are the exclusive property and copyright of Marshall Cavendish Limited and may not be copied, reproduced, transmitted, hired, lent, distributed, stored or modified in any form whatsoever without the prior approval of the Copyright holder.

HOW TO ORDER YOUR BINDERS
UK and Republic of Ireland: Send $£ 4.95$ (inc p \& p) (IR $£ 5.95$) for each binder to the address below: Marshall Cavendish Services Ltd, Department 980, Newtown Road, Hove, Sussex BN3 7DN
Australia: See inserts for details, or write to InPUT, Times Consultants, PO Box 213, Alexandria, NSW 2015 New Zealand: See inserts for details, or write to INPUT, Gordon and Gotch (NZ) Ltd, PO Box 1595, Wellington Malta: Binders are available from local newsagents.

The final part of a utility program to expand the 64's BASIC commands into hi-resolution graphics, including a completely revised full program
A complete program to let up to six players take part in the traditional dice game 'Yacht'. It rolls the dice, displays them and then fills in the score card

MACHINE CODE 54
There are four binders each holding 13 issues.

BACK NUMBERS

Back numbers are supplied at the regular cover price (subject to availability).
UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN
Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST

Our Subscription Department can supply copies to any UK adidress regularly at $£ 1.00$ each. For example the cost of 26 issues is $£ 26.00$; for any other quantity simply multiply the number of issues required by $£ 1.00$. Send your order, with payment to:
Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN
Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:
Marshall Cavendish Partworks Lid.
QUERIES: When writing in, please give the make and model of your computer, as well as the Part No., page and line where the program is rejected or where it does not work. We can only answer specific queries - and please do not telephone. Send your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:

The SINCLAIR ZX SPECTRUM ($16 \mathrm{~K}, 48 \mathrm{~K}, 128$ and +), COMMODORE 64 and 128 , ACORN ELECTRON, BBC B and $\mathrm{B}+$, and the DRAGON 32 and 64 .
In addition, many of the programs and explanations are also suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and TANDY COLOUR COMPUTER in 32 K with extended BASIC. Programs and text which are specifically for particular machines are indicated by the following symbols:

TUMBLING DICE

At last, a computer game that's designed for several players. So get your family and friends together and start throwing the dice in this game of luck and skill

\square	RULES OF THE GAME
-	STRATEGY
\square	DICE UDGS
\square	THROWING THE DICE
-	SCORING

So far, nearly all the games in INPUT, whether arcade games, adventure games or strategy games, have pitted the player against the computer. With all of these games the main problem was to make the rules and the setting complex enough to give the player an enjoyable game, or, in the case of strategy games, to turn the computer into an intelligent and worthwhile adversary. This game is different. Instead of one person playing alone, this game is designed for up to six people playing against each other. The computer does not take part in the game itself. Instead, it keeps track of each player's score, makes sure no one cheats, and displays the score card-leaving the players to concentrate on the best strategy for winning the game.

The game is a computerized version of the popular dice game called Yacht. Yacht is an engrossing game combining luck and judgement as each player aims to make the highest score. The rules are quite simple. Each player throws five dice at a time (or rather, in this version, the computer throws the dice and displays them on the screen). If you don't like what comes up, you are allowed to have two more goes at throwing the dice and can choose how many of the dice to throw each time in an attempt to build up the best 'hand' you can. After the three goes you must enter the throw on the score card and the turn passes to the next player.

The options on the score card are:

Dice	Score
Ones	Total value of ones only
Twos	Total value of twos only
\vdots	\vdots
Sixes	Total value of sixes only
4 of a kind	Total of the four dice
Full house	Total of all five dice
Short run	15
Long run	30
Choice	Total of all five dice
Yacht	50

A short run is a run of four dice, say $2,3,4,5$, and a long run is a run of all five dice, either 1 , $2,3,4,5$ or $2,3,4,5,6$. A full house consists off three numbers of one kind plus a pair of any other number. Choice is a mixture of any dice, and Yacht is five of a kind.

Players must select a different category on each turn. To select a category, move the arrow up or down and press the space bar when the arrow points to your choice. If, at the end of the three throws, the dice cannot be fitted into any of the vacant categories, you have to choose which category to 'waste'. It is obviously best to waste one of the low scoring categories such as the ones or twos. However, towards the end of a round, you may be forced to waste some of the higher-scoring categories. In fact, it is good strategy to aim for the higher-scoring categories first, as these are more difficult to get.
The program is divided into three main sections, the initialization routine, the main game loop, and the subroutines or procedures called by the main loop.

INITIALIZATION

This section sets up the UDGs which display the dice, initializes the variables and asks for the names of the players.

-

20 LET Q $\$=$ "...........": LET Z\$ = " $\square \square \square$
 N = 1 TO 13: READ C(N): NEXT N: DIM T(5): DIM R(5): DIM D(5)
30 FOR N = USR "A" TO USR " G " +7 :
READ A: POKE N,A: NEXT N
40 DATA $2,3,4,5,6,7,11,14,17,20,23,25,27$
50 DATA $\emptyset, \varnothing, \varnothing, 24,24, \emptyset, \varnothing, \varnothing$
60 DATA $\emptyset, 6,6, \emptyset, \emptyset, 96,96, \emptyset$
70 DATA 3,3,Ø,24,24,Ø,192,192
80 DATA Ø,102,102,Ø,Ø,102,102,0

$9 \emptyset$ DATA 195,195, $\varnothing, 24,24, \emptyset, 195,195$ 100 DATA 102,102,0,102,102,0,102,102 $11 \emptyset$ DATA $\emptyset, 24,48,96,255,96,48,24$ 120 PRINT AT 10,13;"YACHT": INK 1: PRINT AT 12,7;"HOW MANY PLAYERS""'TAB 11;"(1 TO 6)"
130 INPUT NP: LET NP = INT (NP): IF NP <1 OR NP > 6 THEN GOTO 130 140 DIM O(NP,12): DIM P(NP,12): DIM S(NP,5): DIM N\$(NP,6): DIM Q(NP) 150 FOR N $=1$ TO NP: CLS : PRINT AT 8,5;"PLAYER $\square " ;(N)$;".""'TAB 5;"WHAT'S YOUR NAME ?": INPUT W\$: IF LEN $\mathrm{W} \$>6$ THEN LET W $\$=\mathrm{W} \$($ TO 6$)$ 160 LET $N \$(N)=2 \$$ (TO $3-$ (LEN W\$)/2) + W\$: NEXT N

CE

10 POKE53280,5:POKE53281,13:PRINTCHR\$ (147);CHR\$(144);
$20 \operatorname{DIMT}(5), \operatorname{TR}(5), D(5), A \$(13), D C \$(5)$
30 FORZ $=1$ TO6:READA: $Z \$=Z \$+\operatorname{CHR} \$(A):$ NEXT
$4 \emptyset$ FORZ $=1$ TO5:FORX $=1$ TO5: READQ: DC\$(Z) $=\operatorname{DC\$ (Z)}+$ CHR\$(Q):NEXTX,Z: FORT $=1$ T012
50 READA $\$: A \$(T)=A \$+$ LEFT $\$("$ \qquad ...", 12 - LEN(A\$)) + ":":NEXTT
60 PRINTTAB(127);"HOW MANY PLAYERS (1-6) ?";
70 GETAS:IFAS < " 1 "ORA\$ > " 6 "THEN70 $80 N P=V A L(A \$):$ PRINTNP:DIMN\$(NP),SC (NP), O(NP,13), P(NP,13),S(NP,5)

90 PRINTCHR\$(149):FORN = 1 TONP:PRINT TAB(1);"PLAYER";N,:INPUT"NAME $\square " ;$ N\$(N):NEXT
1150 DATA 17,157,157,157,157,157,32,32,32, 32,32,209,32,32,32,32
1160 DATA 32,32,209,32,32,32,32,32,32,209, 209,32,32,32,209
1170 DATA ONES,TWOS,THREES,FOURS, FIVES,SIXES,4 OF A KIND
1180 DATA FULL HOUSE,SHORT RUN,LONG RUN,CHOICE, YACHT

θ

$2 \emptyset$ MODE2:VDU23,1;Ø;Ø;Ø;Ø: ${ }^{*}$ FX11,Ø
$3 \emptyset \operatorname{DIMT}(5), \operatorname{TR}(5), \mathrm{D}(5), \mathrm{A} \(13)
40 FORT $=1$ T012:READA $: A \$(T)=A \$+$
STRING\$((12-LEN(A\$)),".") +":":NEXT
50 VDU23,224, $, \emptyset, \emptyset, 24,24, \emptyset, \emptyset, \emptyset$
$6 \emptyset$ VDU23,225, $, 6,6, \emptyset, \emptyset, 96,96, \emptyset$
$7 \emptyset$ VDU23,226,3,3, $, 24,24, \emptyset, 192,192$
$8 \emptyset$ VDU23,227, $, 1 \emptyset 2,1 \emptyset 2, \emptyset, \emptyset, 1 \emptyset 2,102, \emptyset$
$9 \emptyset$ VDU23,228,195,195, $0,24,24, \emptyset, 195,195$
$1 \emptyset 0$ VDU23,229,102,102, $, 102,102,0,102,102$
110 VDU23,230, $0,24,48,96,255,96,48,24$
120 COLOUR130:CLS:COLOUR7
130 PRINTTAB $(2,14)$ "HOW MANY
PLAYERS"""" $\square \square \square \square \square(1$ TO 6)":
REPEAT:NP $=$ GET $-48:$ UNTILNP $>\emptyset$ AND $\mathrm{NP}<7$

140 DIMN\$(NP),SC(NP),O(NP,13),P(NP,13),S (NP,10)
150 COLOUR128:CLS:COLOUR2:FORN $=1$ TO NP
$16 \emptyset \operatorname{PRINTTAB}(5,1 \emptyset)$ "PLAYER $\square " ; N ; "$."" " \square WHAT'S YOUR NAME ?":INPUTTAB $(7,14) N \$(N): C L S: N E X T$

民

10 CLS:X\$ $=\operatorname{CHR} \$(13): \operatorname{DIMD} \$(6,4)$
$2 \emptyset$ FORK $=1$ T06:FORJ $=1$ T03:FORL $=1$ T03: READA: $D \$(K, J)=D \$(K, J)+C H R \$(128+$ 65*A):NEXT
$3 \emptyset D \$(K, J)=D \$(K, J)+C H R \$(133): N E X T$
$4 \emptyset D \$(K, J)=\operatorname{STRING} \$(3,131)+\operatorname{CHR} \$(135):$ NEXT
$5 \emptyset$ DATA Ø, $, \emptyset, \emptyset, 1, \emptyset, \emptyset, \emptyset, \emptyset, 1, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 1$
$6 \emptyset$ DATA 1, $, \emptyset, \emptyset, 1, \emptyset, \emptyset, \emptyset, 1,1, \emptyset, 1, \emptyset, \emptyset, \emptyset, 1, \emptyset, 1$
$7 \emptyset$ DATA 1, $, 1, \emptyset, 1, \emptyset, 1, \emptyset, 1,1, \emptyset, 1,1, \emptyset, 1,1, \emptyset, 1$
80 PRINT:PRINT" HOW MANY PLAYERS (1-6) ?";
90 A $\$=I N K E Y \$: I F A \$<" 1 " O R A \$>" 6 "$ THEN 90
100 PRINTA\$:NP = VAL(A\$):CLS
110 FORN = 1TONP:PRINT@65,"PLAYER";N: PRINT"‘ \square WHAT'S YOUR NAME ?":INPUT $\mathrm{N} \$(\mathrm{~N})$
120 CLS:NEXT
130 DIMO(NP,12),P(NP,12),S(NP,10)

THE MAIN GAME

The structure of the game is very simple and consists of only these few lines:

-

170 FOR $R=1$ TO 5: FORI=1 TO 12: FOR $N=1$ TO NP
180 BORDER 4: INK Ø: PAPER 4: CLS : PRINT AT 3,13;N\$(N)
190 FOR $M=5$ TO 27: PRINT PAPER Ø;AT
5,M;" $\square " ; A T$ 19,M;" \square ": NEXT M
$2 \emptyset \emptyset$ FOR $M=6$ TO 18: PRINT PAPER Ø;AT
M,5;" $\square " ;$ AT M,27;" \square ": NEXT M
210 GOSUB 240: PAUSE Ø: GOSUB 430
230 NEXT N: NEXT I: GOSUB 1290: NEXT R: STOP

CE

100 FORR $=1 T 05: F O R I=1 T 012: F O R N=1 T 0$ NP
110 PRINTCHR\$(147);CHR\$(31):GOSUB1140 120 PRINT
130 GOSUB170:FORE = 1T01500:NEXT 140 POKE53280,6:POKE53281,14:GOSUB31Ø 150 POKE53280,5:POKE53281,13:NEXTN,I: POKE53280,2:POKE53281,10:GOSUB94Ø 160 NEXTR:POKE5328Ø, $\emptyset: P O K E 53281,11$: PRINTCHR\$(147);CHR\$(5);"BYE NOW!":

1140 PRINTSPC((40 - LEN(N\$(N)))/2); $\mathrm{N} \$(\mathrm{~N}):$ RETURN

170 FORR $=1 \mathrm{TO5}: F O R I=1 \mathrm{TO12}: F O R N=1 \mathrm{TO}$ NP
180 COLOUR128:CLS:COLOUR6:PROCNAME (3)

190 VDU28,Ø,22,19,5:COLOUR132:CLS:VDU 28,1,21,18,6:COLOUR130:CLS:VDU26

200 PROCTHROW

210 FORE = 1T01500:NEXTE
220 MODE1:VDU23, $1 ; \emptyset ; \emptyset ; \emptyset ; \emptyset:$ PROCSCORE: MODE2:NEXTN,I:MODE1:VDU23,1; $; \emptyset ; \emptyset ; \emptyset$ 230 PROCTABLE:MODE2:VDU23,1;Ø; $\emptyset ; \emptyset ; \emptyset:$ NEXT:END
920 DEF PROCNAME(Y):PRINTTAB(10((LEN $(N \$(N))) / 2), Y) N \(N) :ENDPROC

\%A 口

140 FORR $=1 \mathrm{TO5}: F O R I=1 \mathrm{TO12}: F O R N=1 \mathrm{TO}$ NP
150 CLS:W = 6:Y = 2:GOSUB980:GOSUB190
160 SOUND50,3:FORE = 1T08ØØ:NEXT
$17 \emptyset$ CLS:GOSUB350:CLS:NEXTN,I
180 CLS:GOSUB990:NEXTR:END
980 PRINT@ $Y^{*} 32+W-((\operatorname{LEN}(N \$(N))) / 2)$, $\mathrm{N} \$(\mathrm{~N}):$ RETURN

There are three nested loops controlling the game. R is the number of rounds, I is the number of goes per round and N is the number of players. The routines called inside these loops throw the dice, print the score sheet and print the final score table. The Acorn, Dragon and Tandy also call a short

routine to centre the name on the screen. The main routines are broken down yet again into smaller routines as you'll see in a moment.

THROWING THE DICE

The first of the routines throws the dice and displays them on the screen, it calls two other routines which are given here as well. Add these to the last sections.

240 LET T=1: FOR D=1 TO 5: LET
$T(D)=$ INT $($ RND* 6$)+1$: NEXT D
250 PRINT AT $6+T^{*} 3,7$; "THROW \square "; T
260 GOSUB 1180
270 IF T = 3 THEN GOTO 390
280 LET C=1: FOR D=1 TO 5
290 PRINT AT $7+T^{*} 3,16+D^{*} 2 ;$ "?"
$30 \emptyset$ FOR J=1 TO 50: NEXT J
310 LET A $\$=$ INKEY\$: IF $A \$=" "$ THEN GOTO 310
320 IF A\$ = " N " THEN BEEP .1,10: GOTO $36 \emptyset$
330 IF A\$ < > "Y" THEN GOTO 310
340 BEEP . 1,30
350 LET $R(C)=T(D):$ LET $C=C+1$
$36 \emptyset$ PRINT AT $7+T^{*} 3,16+D^{*} 2 ;{ }^{\prime} \square$ ": NEXT D
370 IF $\mathrm{C}=6$ THEN GOSUB 420: LET $\mathrm{T}=4$: GOTO $4 \emptyset 0$
380 FOR $D=C$ TO 5: LET R(D) $=$ INT
(RND*6) + 1: NEXT D: GOSUB 420
$39 \emptyset$ LET T $=T+1$
400 IF T < > 4 THEN GOTO 250
410 RETURN
420 FOR $D=1$ TO 5: LET T(D) = R(D): NEXT D: RETURN
1180 FOR D $=1$ TO 5: PRINT PAPER 2; INK 6; BRIGHT 1;AT 6+T*3,16 + $D^{*} 2 ;$ CHR\$ (143+T(D)): PAUSE 2: BEEP .01, RND*4Ø: NEXT D: RETURN

C

$17 \emptyset T=1: F O R D=1 T 05: T(D)=I N T$
(RND $\left.(1)^{*} 6\right)+1$ NEXTD
180 PRINTTAB(1);"THROW:";SPC(2);T;: GOSUB1Ø4Ø
190 IFT $=3$ THENT $=4:$ PRINTTAB $(120): G O T O$ 280
$20 \emptyset C=1: \operatorname{PRINTTAB}(165) ;: F O R D=1 T 05:$ PRINTSPC(5);"?";CHR\$(157);
210 GETAS:IFA\$ < > " Y "ANDA\$ < > "N" THEN210
220 POKE53280,5:IFA\$ = "N"THEN24
$230 \operatorname{TR}(\mathrm{C})=\mathrm{T}(\mathrm{D}): \mathrm{C}=\mathrm{C}+1$
240 PRINTCHR\$(32);:NEXTD:PRINTCHR\$ (145)

250 IFC $=6$ THENGOSUB30Ø:T = 4:GOTO28Ø
$26 \emptyset$ FORD $=$ CTO5:TR $(D)=\operatorname{INT}($ RND
(1) $\left.{ }^{*} 5\right)+1$:NEXTD

280 IFT < 4THEN 180
290 RETURN
300 FORD $=1$ TO5:T(D) $=$ TR(D):NEXT:
RETURN
1040 PRINTCHR\$(17);CHR\$(17);CHR\$(29);:
FORX $=1 T 05: D=T(X)$
1050 PRINTCHR $\$(18) ;: F O R Q=1$ T05:PRINT
CHR (157);:NEXTQ
$106 \emptyset$ IFD $=1$ THENPRINTDC\$(1);Z\$;DC\$(1); Z\$;DC\$(3);Z\$;DC\$(1);Z\$;DC\$(1);
$107 \emptyset$ IFD $=2$ THENPRINTDC\$(2);Z\$;DC\$(1); Z\$;DC\$(1);Z\$;DC\$(1);Z\$;DC\$(4);
$1 \emptyset 8 \emptyset$ IFD $=3$ THENPRINTDC\$(4);Z\$;DC\$(1); Z\$;DC\$(3);Z\$;DC\$(1);Z\$;DC\$(2);
$1 \emptyset 9 \emptyset$ IFD $=4$ THENPRINTDC\$(5);Z\$;DC\$(1); Z\$;DC\$(1);Z\$;DC\$(1);Z\$;DC\$(5);
$110 \emptyset$ IFD $=5$ THENPRINTDC\$(5);Z\$;DC\$(1); Z\$;DC\$(3);Z\$;DC\$(1);Z\$;DC\$(5);
1110 IFD = 6THENPRINTDC\$(5);Z\$;DC\$(1); Z\$;DC\$(5);Z\$;DC\$(1);Z\$;DC\$(5);
1120 PRINTCHR\$(145);CHR\$(145);CHR\$ (145);CHR\$(145);

1130 FORZ = 1 TO6:PRINTCHR\$(29);:NEXTZ,X: PRINT:RETURN

θ

240 DEF PROCTHROW
$25 \emptyset$ VDU 23, $1 ; \emptyset ; \emptyset ; \emptyset ; \emptyset: T=1$
260 FOR $D=1$ TO 5: T(D) = RND (6): NEXT
270 REPEAT
280 COLOUR Ø: COLOUR 13Ø: PRINT TAB (1, $8+\mathrm{T}^{*} 3$) "THROW:";T
290 PROCDICE: IF $T=3$ THEN $T=4$: GOTO 380 ELSE C=1
300 FOR D $=1$ TO 5: COLOUR 130: COLOUR
8: PRINT TAB $\left(8+D^{*} 2,9+T^{*} 3\right)$ "?"
310 A\$ = GET\$: IF A\$ = "N" THEN SOUND 1, $-15,2,2$ GOTO 340
320 IF A\$ < > "Y" THEN 310 ELSE SOUND $1,-15,150,4$
$33 \emptyset \operatorname{TR}(C)=T(D): C=C+1$

$27 \emptyset$ GOSUB3ØØ:T = T + 1

340 PRINTTAB（ $8+D^{*} 2,9+T^{+} 3$ ）＂\square＂：NEXT
350 IF $\mathrm{C}=6$ THEN PROCTRANS： $\mathrm{T}=4$ ：GOTO 380
360 FOR $D=C$ TO 5：TR（ D$)=$ RND（6）：NEXT
370 PROCTRANS：$T=T+1$
380 UNTIL T＝4：ENDPROC
390 DEF PROCTRANS
400 FORD $=1$ TO 5：T（D）＝TR（D）：NEXT：
ENDPROC
910 DEF PROCDICE：COLOUR 129：COLOUR
3：FOR $D=1$ TO 5：PRINT TAB $\left(8+D^{\circ} 2\right.$ ，
$\left.8+T^{*} 3\right) \mathrm{CHR} \$(223+T(D)):$ FOR $E=1$ TO
8：NEXT：SOUND $\emptyset,-15, \emptyset, 1$ ：NEXT：
ENDPROC
$190 \mathrm{~T}=1: \mathrm{FORD}=1 \mathrm{TO5}: T(\mathrm{D})=$ RND $(6):$ NEXT
200 PRINT＠64＊T＋64，＂THROW：＂；T；
210 GOSUB970：IFT＝ 3 THEN310
$220 \mathrm{C}=1$ ：FORD $=1$ TO5
230 PRINT＠288，TAB（9＋D＊4）＂？＂
240 A $\$=$ INKEY $\$: I F A \$<>$＂N＂AND
A $\$<>$＂$Y$＂THEN240
250 IF A\＄＝＂N＂THENSOUND10，1：GOT0270
260 SOUND100，1：TR（C）$=\mathrm{T}(\mathrm{D}): \mathrm{C}=\mathrm{C}+1$
270 NEXTD：PRINT＠288
280 IFC＝6GOSUB340：RETURN
290 FORD $=C \square T 05: T R(D)=$ RND $(6):$ NEXTD
300 GOSUB340
$310 \mathrm{~T}=\mathrm{T}+1$
320 IF T＜＞ 4 THEN 200
330 RETURN
340 FORD $=1$ TO5：T（D）$=$ TR（D）：NEXTD：RETURN
970 FORD $=1$ TO5：FORG $=1$ TO4：PRINT＠
$136+\mathrm{G}^{*} 32+\mathrm{D}^{*} 4, \mathrm{D} \$(\mathrm{~T}(\mathrm{D}), \mathrm{G}) ;$ NEXTG，D： RETURN

Five dice are thrown at first and these are displayed on the screen using the routine at Line $118 \emptyset$ on the Spectrum，Lines $1 \emptyset 4 \emptyset$ to $113 \emptyset$ on the Commodore， $91 \emptyset$ on the Acorn and $97 \emptyset$ on the Dragon and Tandy．You are then given the chance to select the dice by pressing Y for the ones you wish to keep and N for the ones you want to throw again．

The initial numbers of the five dice are stored in array $T()$ ．After the first throw，the ones you wish to keep are put into a tempor－ ary array $R()$ and this is made up to five again with random numbers．The $R()$ array is then transferred back into $T()$ using the one－line routine at $42 \emptyset$ on the Spectrum， $3 \emptyset \emptyset$ on the Commodore， $4 \emptyset \emptyset$ on the Acorn and $34 \emptyset$ on the Dragon and Tandy．These are displayed on the screen once more and the process is repeated for your next throw．

THE SCORE CARD

The vast majority of the program is con－ cerned with calculating the score and check－ ing the entries on the score card．

＝

430 BORDER 0：PAPER 0：INK 6：CLS
440 PLOT 4，4：DRAW 0，167：DRAW 124，0：
DRAW 0，－167：DRAW－124， 0
450 PRINT INK 5；AT 1，5；N\＄（N）；INK 4；AT 2，1；＂＊＇SCORE SHEET＊＂
460 RESTORE 1280：FOR $M=4$ TO 17：READ
A\＄：PRINT AT M，1；A\＄；0\＄（ TO 11 －LEN
A\＄）；：IF M＜＞ 16 THEN PRINT＂：＂
470 NEXT M
480 GOSUB 530
490 GOSUB 560：GOSUB 530
500 PRINT FLASH 1；AT 20，18；＂ANY KEY TO＂；AT 21，18；＂CONTINUED口＂
510 LET A\＄＝INKEY\＄：IF A\＄＝＂＂THEN GOTO 510
520 RETURN
530 FOR $\mathrm{D}=1$ TO 12：IF P（N，D）$=1$ THEN PRINT AT 3＋D，13；＂＂$"$＂
540 IF $0(\mathrm{~N}, \mathrm{D})<>0$ THEN PRINT AT $3+D, 13 ; 0(N, D)$
550 NEXT D：LET C＝0：FOR $D=1$ TO 12：
LET $C=C+0(N, D)$ ：NEXT D：PRINT AT 17，13；C：RETURN
560 PRINT AT 8，18；＂ROUND $\square " ;$ ；AT 9，18；＂＇SECTION \square＂；
570 PRINT AT 2，18；＂FINAL SET $=\square$＂：LET
T＝－1：GOSUB 1180
580 PRINT AT 5，18；＂SELECT SCORE＂；AT
6，18；＂GROUP．＂
590 LET A＝ 4
600 PRINT AT A，15；CHR\＄ 150
610 LET $B \$=$ INKEY\＄：IF B $\$=$＂＂THEN GOTO 610
620 IF $B \$=$＂$\square$＂THEN LET $A=A-3$ ： GOTO 710
630 IF B $=$＂K＂THEN GOTO 650
640 IF B\＄＜＞＂M＂THEN GOTO 610
650 PRINT AT A，15；＂\square＂
660 IF $\mathrm{B} \$=$＂K＂AND A $=4$ THEN GOTO 600
670 IF $B \$=$＂$M$＂AND $A=15$ THEN GOTO 600
680 IF $B \$=$＂$M$＂THEN LET $A=A+1$
690 IF $B \$=$＂$K$＂THEN LET $A=A-1$
700 BEEP ． 01,5 ：GOTO 600
710 PRINT AT A＋3，15；＂\square＂：IF
$\mathrm{P}(\mathrm{N}, \mathrm{A})<>0$ THEN GOTO 1240
720 IF A >6 THEN GOTO 780
730 LET C＝0
740 FOR $\mathrm{D}=1$ TO 5 ：IF T（D）＝A THEN LET $C=C+1$
750 NEXT D
760 LET $0(N, A)=C^{*} A$
$77 \varnothing$ LET P（N，A）＝1：RETURN
780 IF $A=11$ THEN FOR D $=1$ TO 5：LET $0(\mathrm{~N}, 11)=0(\mathrm{~N}, 11)+\mathrm{T}(\mathrm{D})$ ：NEXT D：LET $\mathrm{P}(\mathrm{N}, 11)=1$ ：RETURN
790 FOR $\mathrm{D}=1$ TO 5 ：LET $\mathrm{D}(\mathrm{D})=0$ ：NEXT D： LET $B=\emptyset$ ：FOR $E=1$ TO 6：LET C＝ 0 ： FOR $D=1$ TO 5：IF T（D）＝E THEN LET

$\mathrm{C}=\mathrm{C}+1$

800 NEXT D：IF C＜＞ 0 THEN LET B $=B+1$ 810 NEXT E
820 LET G $=1$ ：FOR F $=1$ TO 6：GOSUB
1250：IF C＜＞ 0 THEN LET D（G）$=$ F：LET $\mathrm{G}=\mathrm{G}+1$
830 NEXT F
840 LET P（N，A）＝1：IF A＝ 7 THEN GOTO 950
850 IF $A=8$ THEN GOTO 1010
860 IF $A=9$ THEN GOTO 1050
870 IF $A=10$ THEN GOTO 1120
890 IF A＝ 12 THEN GOTO 1160
950 IF B＞ 2 THEN GOTO 1190
960 IF $B=1$ THEN GOSUB 1270：LET
$0(N, 7)=C$ ：RETURN
970 LET F＝1
980 GOSUB 1250：LET $\mathrm{F}=\mathrm{F}+1$ ： $\mathrm{IF} \mathrm{C}<>4$
AND F＜＞ 7 THEN GOTO 980
990 IF C＜ 4 THEN GOTO 1190
1000 LET $0(N, 7)=4^{*}(F-1)$ ：RETURN
1010 IF B＜＞ 2 THEN GOTO 1190
1020 LET F＝D（1）：GOSUB 1250：IF C＝3
THEN GOTO 1040
1030 LET F＝D（2）：GOSUB 1250：IF C $<>3$
THEN GOTO 1190
1040 LET $0(N, 8)=\emptyset:$ FOR G $=1$ TO 5：LET
$0(\mathrm{~N}, 8)=0(\mathrm{~N}, 8)+\mathrm{T}(\mathrm{G})$ ：NEXT G：RETURN
1050 IF B＜＞ 4 THEN GOTO 1080
1060 GOSUB 1270：IF C＜＞ 18 AND
$\mathrm{C}<>10$ AND $\mathrm{C}<>140 \mathrm{R}$（ $\mathrm{C}=14 \mathrm{AND}$
$D(4)=6)$ THEN GOTO 1190
1070 LET $0(N, 9)=15:$ RETURN
1080 IF B＜＞ 5 THEN GOTO 1190
1090 GOSUB 1270：IF C＝ 15 OR C＝$=16$ OR
C＝19 THEN GOTO 1070
1100 IF C＜＞ 20 THEN GOTO 1190
1110 GOTO 1070
1120 IF B＜＞ 5 THEN GOTO 1190
1130 GOSUB 1270：IF C＝15 OR C＝20
THEN GOTO 1150
1140 GOTO 1190
1150 LET $0(N, 10)=30$ ：RETURN
1160 IF B＜＞ 1 THEN GOTO 1190
1170 LET O（N，12）＝50：RETURN
1190 BEEP ．5，5：PRINT AT 20，18；
＂ILLEGAL ！！＂；AT 21，18；＂WASTE ？＂
1200 LET A\＄＝INKEY\＄：IF A\＄＝＂＂THEN GOTO 1200
1210 IF A\＄＝＂N＂THEN PRINT AT 20，18；＂\square
$\square \square \square \square \square \square \square \square \square " ;$ AT 21，18；＂\square
$\square \square \square \square \square \square: \operatorname{LET~P(N,A)=\emptyset :~GOTO~}$ 590
1220 IF A\＄＜＞＂Y＂THEN GOTO 1200
1230 LET P（N，A）＝1：RETURN
1240 BEEP ．5，5：PRINT AT 20，18；＂SECTION
FILLED＂：FOR H＝1 TO 300：NEXT H：
PRINT AT 20，18；＂$\square \square \square \square \square \square \square \square \square$
पロロロロ＂：GOTO 590
1250 LET C $=0$ ：FOR D $=1$ TO 5 ：IF T（D）$=$ F
THEN LET $\mathrm{C}=\mathrm{C}+1$
1260 NEXT D：RETURN

1270 LET $C=\emptyset:$ FOR $D=1$ TO B: LET $C=C+D(D):$ NEXT $D:$ RETURN
1280 DATA "ONES","TWOS","THREES", "FOURS","FIVES","SIXES","4 OF A KIND","FULL HOUSE","SHORT RUN", "LONG RUN","CHOICE","YACHT"," \square $\square \square \square \square \square \square \square \square \square \square$ ","TOTAL"

C

310 PRINTCHR\$(147);CHR\$(5):GOSUB1140: PRINT
320 FORZ $=1$ T051:PRINTCHR\$(18);
CHR\$(31);CHR\$(32);:NEXTZ
330 PRINT"** SCORE SHEET **";
340 FORZ $=1$ T051:PRINTCHR\$(18);CHR\$ (31);CHR\$(32);:NEXTZ:PRINT:PRINT: PRINT
350 FORT $=1$ T012:PRINT,CHR\$(149);A\$(T): NEXTT
360 PRINTTAB(50);CHR\$(144);"TOTAL"
370 GOSUB420:GOSUB490:GOSUB420
380 PRINTCHR\$(19);:FORZ $=1$ TO24:PRINT CHR\$(17);:NEXTZ
390 PRINTCHR\$(31);SPC(2);"PLEASE PRESS
ANY KEY TO CONTINUE. ..";
$40 \emptyset$ GETA\$:IFA\$ = ""'THEN4ØØ
410 RETURN
420 PRINTCHR\$(19);CHR\$(5);:FORZ = 1T09:
PRINTCHR\$(17);:NEXTZ:FORD $=1$ TO12
430 IFO(N,D) < > ØTHENPRINTSPC(30);
O(N,D):GOTO46Ø
$440 \operatorname{IFP}(\mathrm{~N}, \mathrm{D})=1$ THENPRINTSPC(31); CHR\$(214):GOTO460
450 PRINT
460 NEXTD:C $=\emptyset:$ FORD $=1$ T012
$470 \mathrm{C}=\mathrm{C}+\mathrm{O}(\mathrm{N}, \mathrm{D}):$ NEXTD:PRINT
$48 \emptyset$ PRINTSPC(30);C:S(N,R) = C:RETURN
490 PRINTCHR\$(19);CHR\$(5);TAB(240);
500 PRINT"ROUND";R;"TURN";I;
510 PRINT"FINAL SET $=" ;:$ FORD $=1$ T05:
PRINTT(D);CHR\$(157);:NEXTD
520 PRINT,SPC(7);CHR\$(144);"PLEASE SELECT SCORE GROUP:";
$530 \mathrm{~A}=1: \mathrm{K}=1353+\left(\mathrm{A}^{*} 40\right):$ POKEK, $62:$ POKE $K+54272,1$
$540 \mathrm{~K}=1353+\left(\mathrm{A}^{*} 40\right):$ POKEK, $94-\operatorname{PEEK}(\mathrm{K}):$ POKEK + 54272,1
550 GETA\$:IFA\$ = CHR\$(32)THEN610
560 IFA\$ < > CHR\$(145)ANDA\$ < > CHR\$ (17)THEN540

570 POKEK, $32: A=A+(A \$=\operatorname{CHR} \$(145))$

- (A\$ = CHR\$(17))

580 IFA $=\emptyset$ THENA $=12$
590 IFA $=13$ THENA $=1$
600 GOTO540
610 POKEK,32
$62 \emptyset \operatorname{IFP}(N, A)<>\emptyset$ THEN920
630 IFA $<>11$ THEN650
640 FORD $=1$ TO5:0 $(N, A)=0(N, A)+T(D):$
NEXT:P(N,A) = 1:RETURN
650 IFA > 6THEN690
$660 \mathrm{C}=\emptyset: \mathrm{FORD}=1 \mathrm{TO5}: \mathrm{IFT}(\mathrm{D})=$ ATHEN $C=C+1$
$67 \emptyset$ NEXT:IFC $=$ ØTHEN87 \emptyset
$68 \emptyset_{0}(N, A)=C^{*} A: P(N, A)=1:$ RETURN
$69 \emptyset$ FORD $=1$ TO5:D $(D)=\emptyset:$ NEXT:B $=\emptyset: F O R$ $F=1$ TO6:GOSUB1Ø2Ø
700 IFC $<>$ ØTHENB $=\mathrm{B}+1$
710 NEXT:G $=1: F O R F=1$ TO6:GOSUB1020:
IFC $<>$ ØTHEND $(G)=F: G=G+1$
720 NEXT:P(N,A) = 1:ONA - 6GOTO730,780, 820,84Ø,915,86Ø
730 IFB > 2THEN870
$740 \mathrm{~F}=1$
750 GOSUB1020:F $=\mathrm{F}+1$:IFC <4 ANDF <7 THEN750
760 IFC < 4THEN870
$7700(\mathrm{~N}, \mathrm{~A})=4^{*}(\mathrm{~F}-1):$ RETURN
780 IFB < > 2THEN870
$790 \mathrm{~F}=\mathrm{D}(1):$ GOSUB1020:IFC $=3$ THEN810
$800 \mathrm{~F}=\mathrm{D}(2):$ GOSUB1020:IFC $<>3$ THEN 870
810 GOTO640
820 IFB >3 THENB $=4:$ GOSUB1 $\emptyset 1 \emptyset: I F C=1 \emptyset$
$O R C=140 R C=18$ THENO $(N, A)=15:$
RETURN
830 GOT0870
840 GOSUB1010:IFB $=5$ AND $(C=150 \mathrm{R}$
$C=2 \emptyset)$ THENO $(N, A)=3 \emptyset:$ RETURN
850 GOT0870
860 IFB $=1$ THENO $(N, A)=5 \emptyset: F O R E=1 T 0$ 100Ø:NEXT:RETURN
870 PRINTCHR\$(19);"NO SCORE - WASTE IT?"
880 GETAS:IFA\$ < > " Y "ANDA\$ < > "N" THEN880
890 PRINTCHR\$(19);:FORZ = 1T020:PRINT CHR\$(32);:NEXTZ
900IFA\$ = "N"THENP(N,A) = Ø:GOTO53
$910 \mathrm{P}(\mathrm{N}, \mathrm{A})=1:$ RETURN
915 GOSUB1010:0(N,A) = C:RETURN
920 PRINTCHR\$(19);"SECTION FILLED":FOR $E=1 T 015 \emptyset \emptyset: N E X T E$
930 PRINTCHR\$(19);:FORZ $=1$ T014:PRINT CHR\$(32);:NEXT:GOTO53Ø
$1010 \mathrm{C}=\emptyset: F O R D=1 T O B: C=C+D(D):$ NEXT D:RETURN
$1020 \mathrm{C}=\emptyset:$ FORD $=1$ TO5:IFT $(\mathrm{D})=$ FTHEN $C=C+1$
1030 NEXT:RETURN

θ

410 DEF PROCSCORE
$42 \emptyset$ COLOUR128:COLOUR1:MOVE64Ø,8:GCOL
Ø,2:DRAW64Ø,1015:DRAW1271,1015:
DRAW1271,8:DRAW640,8:VDU28,21,31,38, 1
$43 \emptyset$ PROCNAME(()$:$ COLOUR2:PRINT "****SCORE SHEET***"
$44 \emptyset$ COLOUR3:FOR $T=1$ T012:PRINTA\$(T)': NEXT:PRINTA\$(T)
450 PRINT:COLOUR2:PRINT"TOTAL

460 PROCTOTAL:PROCSCSEL:PROCTOTAL
$47 \emptyset$ COLOUR129:COLOUR $: \operatorname{PRINTTAB}(\emptyset, 1 \emptyset)$
"ANY KEY TO CONTINUE"
480 A\$ = GET\$:ENDPROC
490 DEF PROCTOTAL:VDU28,21,31,38,1:
COLOUR1:FORD $=1$ T013
500 IFO(N,D) < > ØTHENPRINTTAB(13,
$\left.1+D^{*} 2\right) ; 0(N, D)$ ELSEIFP $(N, D)=1$ THEN
PRINTTAB $\left(13,1+D^{*} 2\right)$ " X "
$51 \emptyset$ NEXTD:C $=\emptyset:$ FORD $=1$ TO12: $C=C+0$
(N,D):NEXTD:PRINTTAB(13,29);C:VDU26:
ENDPROC

520 DEF PROCSCSEL

530 COLOUR135:COLOURØ:PRINTTAB $(\emptyset, 3)$
"ROUND \square ";R;" \square SECTION \square ";I:
COLOUR128
540 COLOUR2:PRINTTAB($\varnothing, 5)$ "FINAL SET = "
$550 \mathrm{~T}=-1$:PROCDICE:COLOUR7:PRINT:
PRINT"SELECT SCORE GROUP"
560 COLOUR3:COLOUR128:A = 1
$57 \emptyset$ VDU31,37,2 + A* 2,230
$580 \mathrm{~B}=\mathrm{GET}: I F B=32$ THEN660
590 IF $\mathrm{B}<>58$ AND $\mathrm{B}<>47$ THEN 580
600 PRINTTAB $\left(37,2+A^{*} 2\right)$ " \square "
610 IFB $=47$ THENA $=A+1$ ELSE $A=A-1$
620 IFA $=\emptyset$ THENA $=12$
630 IFA $=13$ THENA $=1$
640 SOUND1, - 15,220,1
650 GOTO57Ø
$66 \emptyset \operatorname{PRINTTAB}\left(37,2+A^{*} 2\right)$ " \square " $: \operatorname{IFP}(N, A)$ $<>$ ØTHEN89Ø
670 IFA $<>11$ THEN690
680 FORD $=1$ TO5:0 $(N, A)=0(N, A)+T(D):$
NEXT: $P(N, A)=1: E N D P R O C$
690 IFA > 6THEN720
$7 \emptyset \emptyset \mathrm{C}=\emptyset: \mathrm{FORD}=1 \mathrm{TO5}: \mathrm{IFT}(\mathrm{D})=\mathrm{A} \square$ THEN $C=C+1$
710 NEXT:IF $\mathrm{C}=\emptyset$ THEN $84 \emptyset$ ELSE $0(\mathrm{~N}, \mathrm{~A})=$
$C^{*} A: P(N, A)=1: E N D P R O C$
$72 \emptyset$ FORD $=1$ TO5: $D(D)=\emptyset:$ NEXT: $B=\emptyset: F O R$ $F=1$ TO6:PROCMAJ:IFC $<>\emptyset$ THEN $B=B+1$ 730 NEXT:G $=1: F O R F=1$ TO6:PROCMAJ:IF $\mathrm{C}<>\emptyset \operatorname{THEND}(\mathrm{G})=\mathrm{F}: \mathrm{G}=\mathrm{G}+1$
740 NEXT:P(N,A) $=1: 0 \mathrm{~N}$ A -6 GOTO 750, 780,800,820,10,830
750 IFB > 2THEN840
$760 \mathrm{~F}=1:$ REPEAT:PROCMAJ: $F=F+1:$ UNTIL $C>=4$ OR $F=7: I F C<4 T H E N 840$
$77 \emptyset 0(N, A)=4^{*}(F-1):$ ENDPROC
780 IFB $<>2$ THEN 840 ELSE $F=D(1)$: PROCMAJ:IFC $=3$ THEN79 0 ELSE $F=D(2)$: PROCMAJ:IFC $<>3$ THEN84
790 GOTO68Ø
800 IF $\mathrm{B}<>4$ THEN 812 ELSE PROCTOTE:IF $C=10$ OR $(C=14$ AND $D(4)<>6)$ OR $\mathrm{C}=18$ THEN $0(\mathrm{~N}, \mathrm{~A})=15:$ ENDPROC
810 GOTO840
812 IF $\mathrm{B}<>5$ THEN 840 ELSE PROCTOTE:IF $C=20 O R C=15 O R C=16 O R C=19$ THEN $0(N, A)=15:$ ENDPROC
$82 \emptyset$ PROCTOTE:IF $B=5$ AND $(C=150 R$
$C=2 \emptyset)$ THEN $O(N, A)=3 \emptyset: E N D P R O C$ ELSE $84 \emptyset$
830 IF $B=1$ THEN $0(N, A)=50: T=$ INKEY (200):ENDPROC

840 SOUND1, $-15,2 \emptyset, 10: \operatorname{PRINTTAB}(\emptyset, 10)$ "ILLEGAL! WASTE IT?"
850 A\$ = GET\$
$86 \emptyset$ IFA\$ = "N"THENPRINTTAB $(\emptyset, 1 \emptyset)$ STRING\$(18," \square ");:P(N,A) = Ø:GOTO56Ø
$87 \emptyset$ IFAS < > "Y"THEN850
$880 \mathrm{P}(\mathrm{N}, \mathrm{A})=1:$ ENDPROC
890 SOUND1, $-15,5,10: \operatorname{PRINTTAB}(2,10)$
"SECTION FILLED";:FORE = 1 T01500:
NEXTE:PRINTTAB $(2,1 \emptyset)$ " $\square \square \square \square \square \square$ $\square \square \square \square \square \square \square \square \square \square " ;$ GOTO560
900 ENDPROC
1070 DEF PROCMAJ: $C=\emptyset: F O R D=1 T 05: I F T$
(D) $=\mathrm{F} \square$ THEN $\mathrm{C}=\mathrm{C}+1$

1080 NEXT:ENDPROC
1090 DEF PROCTOTE:C $=\emptyset:$ FORD $=1$ TO5:
$C=C+D(D): N E X T D: E N D P R O C$
$110 \emptyset$ DATA ONES,TWOS,THREES,FOURS,
FIVES,SIXES, 4 OF A KIND,FULL HOUSE, SHORT RUN,LONG RUN,CHOICE,YACHT
350 CLS
$36 \emptyset W=6: Y=\emptyset: G O S U B 980:$ PRINT
"***'SCORE SHEET***"
$37 \emptyset$.PRINT"ONES:'XX"'TWOS:"X\$"THREES.:"X\$"FOURS:"X\$"FIVES. :"X\$"SIXES

380 PRINT"4 OF A KIND.:"XX\$"FULL HOUSE
. .:"X\$"SHORT RUN. ..:"X\$"LONG RUN
....:"X\$"CHOICE.:"X\$"YACHT
........:"X\$
390 PRINT"TOTAL.:";
$4 \emptyset \emptyset$ GOSUB460
$41 \emptyset$ GOSUB49Ø:GOSUB46Ø
$42 \emptyset$ PRINT@467,"any key to";;:PRINT@50Ø,

690 RETURN
700 IFA $=11$ THENFORD $=1$ TO5:0 $(\mathrm{N}, 11)=0$ $(N, 11)+T(D): N E X T: P(N, 11)=1:$ RETURN
710 FORD $=1$ TO5: $D(D)=\emptyset:$ NEXT: $B=\emptyset: F O R$
$E=1$ TO6:C $=\emptyset: F O R D=1$ TO5:IFT $(D)=E$
THENC $=\mathrm{C}+1$
720 NEXTD:IFC $<>0$ THENB $=B+1$
730 NEXTE
$740 \mathrm{G}=1: \mathrm{FORF}=1 \mathrm{TO6}: \mathrm{GOSUB} 1140: \mathrm{IF}$
$\mathrm{C}<>\emptyset \operatorname{THEND}(\mathrm{G})=\mathrm{F}: \mathrm{G}=\mathrm{G}+1$
750 NEXTF
$760 \mathrm{P}(\mathrm{N}, \mathrm{A})=1: A=A-6: 0 \mathrm{NA}$ GOTO770,810,
830,870,960,890
770 IFB >2 THEN9@0 ELSEIFB $=1$ GOSUB 1160:0(N,7) $=C^{*} 4:$ RETURN
$780 \mathrm{~F}=1$
790 GOSUB1140:F=F +1 :IF $\mathrm{C}<>4$ AND $\mathrm{F}<>7$ THEN790 ELSEIFC <4 THEN $9 \emptyset \emptyset$
$8000(\mathrm{~N}, 7)=4^{*}(\mathrm{~F}-1)$:RETURN
810 IFB $<>2$ THEN9 Ø ELSEF $=D(1)$:
GOSUB1140:IFC $=3$ THEN820 ELSE
$F=D(2)$:GOSUB1140:IFC $<>3$ THEN90
820 FORD $=1 \mathrm{TO5:O}(\mathrm{~N}, 8)=0(\mathrm{~N}, 8)+\mathrm{T}(\mathrm{D})$: NEXT:RETURN
830 IFB < > 4 THEN850 ELSEGOSUB1160:IF
$C<>18$ ANDC $<>1$ AANDC $<>140$ R
($\mathrm{C}=14 \mathrm{ANDD}(4)=6$) THEN9Ø0
$8400(\mathrm{~N}, 9)=15:$ RETURN
850 IFB < > 5THEN9@Ø ELSEGOSUB1160:IF
$\mathrm{C}<>2$ QANDC $<>15$ ANDC $<>16$ AND C $<>19$ THEN9@Ø
860 GOTO840
870 IFB $<>5$ THEN9@0 ELSEGOSUB1160:IF
C $<>2$ AANDC $<>15$ THEN9@Ø
$8800(\mathrm{~N}, 10)=30:$ RETURN
890 IFB < > 1 THEN900 ELSEO $(N, 12)=50$:
SOUND5,8:FORE $=1$ TO700:NEXTE:
RETURN
$90 \emptyset$ SOUND20,1:PRINT@432,"illegal.WASTE?";
910 A\$ = INKEY\$:IF A\$ < > "Y" AND
A\$ < > "N" THEN910
920 PRINT@432," $\square \square \square \square \square \square \square \square \square$
$\square \square \square \square \square \square " ;$
930 IFA\$ $=$ "N"THENP(N,A +6$)=\emptyset:$ GOTO53
$940 \mathrm{P}(\mathrm{N}, \mathrm{A}+6)=1$:RETURN
950 SOUND5,1:PRINT@433,"section filled";:
FORE=1TO700:NEXT:PRINT@433," $\square \square$
$\square \square ’ ;: G O T O 530$
960 RETURN
$1140 \mathrm{C}=\emptyset:$ FORD $=1$ T05:IFT $(D)=$ F \square THEN $C=C+1$
1150 NEXTD:RETURN
$1160 C=\emptyset: F O R D=1$ TOB:C $=C+D(D):$ NEXT D:RETURN

The first part of this section up to Line $52 \emptyset$ on the Spectrum, $41 \emptyset$ on the Commodore, $48 \emptyset$ on the Acorn and $45 \emptyset$ on the Dragon and Tandy, prints out the blank score card and calls two other routines to fill in the card and accept the latest entry. The following routine,
which takes up the next three lines，is the one which fills in the card with your previous score，and adds up the current total．Follow－ ing this is a large section which accepts and validates your choice．

The first few lines display details of th round and section，and re－display your dice The next part detects which keys are pressed and moves the cursor up and down the score card accordingly．The Spectrum version uses the M and K keys，to move the cur－ sor，the Acorn uses ：and／and the Com－ modore，Dragon and Tandy use the up and down arrow keys．

As soon as you press the space bar the choice is accepted and the position of the cursor is stored in the variable A．This variable conveniently points to your chosen category；$A=1$ for Ones，down to $A=11$ for Yacht．The value of A is used throughout the remainder of the routine to work out your score．Another important variable is B which holds the number of different dice in your throw－so $B=2$ for a full house and $B=5$ for a long run，for example．

So，depending on the value of A，different routines are called to check that your dice really do correspond to the category you＇ve chosen．Assuming they do，the score is worked out and entered onto the score card．If they do not match，then the computer prints ILLEGAL！and you are asked if you want to waste this category．If you answer Y ，an X will be printed instead of a score，and if you answer N you can go on to choose another category．The computer will also check if the category is already filled．

THE．FINAL SCORE

The last section simply prints up the total score for each player at the end of each round． The numbers of the rounds are printed along the top and the names of the players down the side．There＇s also a total score for each player．

1290 BORDER 7：PAPER 7：INK 3：CLS 1300 PRINT＂＊＊＊＊＊＊＊SCORE TABLE＊＊．．．．．．．
310 PRINT AT 7，Ø：FOR D＝1 TO NP：PRINT N\＄（D）；＂$\square: " "$＂：NEXT D
1320 PRINT INK 1；AT 3，Ø；＂PLAYER＂；INK 2；AT 3，13；＂R $\square 0 \square U \square N \square D "$
1330 PRINT AT 5，12；：FOR D＝1 TO 5：PRINT INK 2；TAB（4＋D＊4）；D；：NEXT D：PRINT INK Ø；＂‘ロロTOTE＂
1340 FOR D $=1$ TO NP
1360 LET C＝Ø：FOR E＝1 TO 12：LET $C=C+O(D, E):$ NEXT $E:$ LET $S(D, R)=C:$ NEXT D
1370 FOR $D=1$ TO NP：FOR $E=1$ TO R

1380 PRINT INK 4；AT $6+D^{*} 2,4+E^{*} 4 ;$ S（D，E）：NEXT E：NEXT D
1390 FOR $D=1$ TO NP：LET $C=\emptyset$ ：FOR $E=1$ TO R：LET C＝C $+\mathrm{S}(\mathrm{D}, \mathrm{E})$ ：NEXT E：PRINT AT $6+D^{*} 2,28 ; C$ ：NEXT D
1400 PRINT \＃1；INVERSE 1；INK
Ø；＂ロロロロロロロANY KEY TO CONTINUEपロロロロロ＂
1410 LET A $\$=$ INKEY ：IF A $\$=$＂＂THEN GOTO 1410
1420 FOR $E=1$ TO NP：FOR $D=1$ TO 12： LET $0(E, D)=\emptyset:$ LET P（E，D）$=\emptyset$ ：NEXT D： NEXT E
1430 RETURN

C

940 PRINTCHR\＄（147）；CHR\＄（144）；
＊＊SCORE TABLE＊＊＊＊＊＊＊＊＂
950 FORD $=1$ TONP：PRINTN\＄（D）；：C＝$=\varnothing$
$96 \emptyset$ FORZ $=1$ TO5： $\operatorname{PRINTTAB(5+Z^{*}5);S(D,Z);:~}$ $C=C+S(D, Z):$ NEXT
970 PRINTCHR\＄（5）；C：NEXT
980 PRINTTAB（41）；＂PLEASE PRESS ANY KEY FOR NEXT ROUND．．．＂
990 GETA\＄：IFA\＄＝＂＂＇THEN990
1000 FORE $=1$ TONP：FORD $=1$ T012：
$O(E, D)=\emptyset: P(E, D)=\emptyset: N E X T D, E:$ RETURN

E

930 DEF PROCTABLE
940 COLOUR3：PRINT＂‘‘．．．．．．．．．．．．．．．．SCORE
TABLE＂，.
950 COLOUR129：CLS：COLOUR2
960 PRINTTAB（ $(, 7) ;$ ：FORD $=1$ TONP：PRINT
N\＄（D）：PRINT：NEXT
970 PRINTTAB（16，3）＂R $\square 0 \square U \square N \square D "$
980 FORD $=1$ TONP
$990 \mathrm{C}=\emptyset:$ FORE $=1 \mathrm{TO12}: \mathrm{C}=\mathrm{C}+0(\mathrm{D}, \mathrm{E}): \mathrm{NEXT}:$
$S(D, R)=C:$ NEXT
1000 FORD $=1$ TO5：PRINTTAB $\left(8+D^{*} 4,5\right) ; D ;:$ NEXTD
1010 COLOUR3：PRINT＂$\square \square T O T A L "$ COLOURØ
1020 FORD $=1$ TONP：FORE $=1$ TOR：PRINTTAB
$\left(6+E^{*} 4,5+D^{*} 2\right) ; S(D, E):$ NEXTE，D
1030 FORD $=1$ TONP：C $=0$ ：FORE $=1$ TOR：
$\mathrm{C}=\mathrm{C}+\mathrm{S}(\mathrm{D}, \mathrm{E}):$ NEXTE：PRINTTAB $(31$ ，
$5+D^{*} 2$ ）；C：NEXTD
1040 COLOUR130：VDU26：PRINTTAB $(8,30)$
＂Any key for next round．＂：＂FX21，\varnothing $1050 \mathrm{~A} \$=\mathrm{GET} \$$
1060 FORE $=1$ TONP：FORD $=1$ TO12：
$O(E, D)=\emptyset: P(E, D)=\emptyset: N E X T D, E: E N D P R O C$

990 CLS：PRINT＂＊＊＊．．．．．．＇SCORE TABLE＊．．．．．．
．．＂，
1000 PRINT＠128：FORD＝1TONP：PRINTN\＄
（D）：NEXT
1010 PRINT＠75，＂R $\square 0 \square U \square \cap \square$＂
1020 FORD $=1$ TONP
$1030 \mathrm{C}=\emptyset:$ FORE $=1 \mathrm{TO12:C=C}+0(\mathrm{D}, \mathrm{E}):$
NEXT：S（D，R）＝C：NEXTD
1040 FORD $=1$ TO5：PRINT＠ $98+D^{*} 4, \mathrm{D} ;$
NEXT
1050 PRINT＂\square TOTAL＂
1060 FORD $=1$ TONP
1070 FORE $=1$ TOR
1080 PRINT＠129＋D＊32＋E＊4，S（D，E）；：NEXT E，D
$109 \emptyset$ FORD $=1$ TONP：C $=\emptyset:$ FORE $=1$ TOR：
$\mathrm{C}=\mathrm{C}+\mathrm{S}(\mathrm{D}, \mathrm{E}):$ NEXTE：PRINT＠153＋
D＊32，C；：NEXTD
1100 PRINT＠448，＂ANY KEY FOR NEXT ROUND．＂；
1110 A $\$=$ INKEY $\$: I F A \$=" "$ THEN1110
1120 FORE $=1$ TONP：FORD $=1$ TO12：
$0(E, D)=\emptyset: P(E, D)=\emptyset: N E X T D, E$
1130 RETURN

COMMODORE HI-RES GRAPHICS-3

Here is a total revision of the Commodore C64 Hi-Res program, superceding the previous articles and supplying the data in modular and machine-code form

In the first two parts of this article (see pages 748 to 751 and 872 to 877) you saw how to add graphics commands to supplement your Commodore 64's BASIC. Now you can add the rest of the commands to give your computer a complete set of graphics commands which will handle all of the Commodore 64's graphics programs given in INPUT.

Unfortunately it was discovered that due to the extremely advanced nature of the $\mathrm{Hi}-\mathrm{Res}$ program as a whole too many bugs had crept into it to allow the normal practice of publishing errata corrections. So this article includes a complete revision of the Hi -Res program from the beginning.

SYNTAX

With all computer commands it is important to get the syntax exactly right. And INPUT's hi-res graphics instructions are no exception. Each command must be followed by the right number of parameters. These must have values in the right range and be in the right order, otherwise strange things may start to happen-or you may just get an error message.

And don't forget to prefix all Commodore 64 graphics commands published in INPUT with an @. This helps the computer to identify the new commands that you've added to BASIC more quickly. The words @LOWCOL and @HICOL also have to be closed up with no space in the middle.

The instruction @HIRES takes two parameters. The first specifies the plotting colour to be used and the second specifies the background colour. They are specified by the logical colour numbers given in the Commodore Users' Manual.

The @COLOUR should also be followed by two parameters. The first specifies the border colour to be used and the second specifies the background colour of the low-resolution screen. Again the colour numbers in the Commodore Users' Manual are used.

The syntax used by @NRM, @CSET, @MULTI, @LOWCOL, @HICOL, @PLOT, @LINE, @REC and @BLOCK are given on pages 872 to 877 .

The @CIRCLE command allows you to
draw circles and ellipses of varying sizes. It takes five parameters. The first two specify the X and Y coordinates of centre of the circle or ellipse respectively.

The next pair specify the X and Y radii of the shape. By varying these you can produce different-shaped ellipses. But due to the rectangular shape of the screen, equal numbers here will not produce a circle. Indeed, different ratios are required to produce the same shaped ellipses on the @MULTI colour and @HIRES screens. So if you want to draw a circle you will have to experiment with the parameters a bit.

The last parameter specifies the plot type. For details see the @PLOT command on page 874.

It is also possible to draw part of a circle or an ellipse using the @ARC command. This takes eight parameters.

The first two are the X and Y coordinates of the shape which @ARC is drawing a section of. The next pair define the beginning and end angles of the arc. The fifth parameter specifies the interval between the dots used to make up the arc-a 1 here gives a solid line.

This works slightly differently from Simons' BASIC which joins up the different points if the line is not solid. So you will have to modify the program on page 369 and draw in the cat's ears with a @LINE command.

The sixth and seventh parameters specify the X and Y radii. And the last parameter gives the plot type.

The opposite of @ARC is @ANGL. This draws in the radii, but omits the circumference of the shape. It takes six parameters.

Again, the first two are X and Y parameters of the centre of the shape. The third parameter is the angle of the radius required measured clockwise, in degrees from the vertical position.

The next two are the horizontal and vertical radii again. And the last one is, as always, the plot type.

The @PAINT command fills an area of the screen with colour. The area to be filled must be completely enclosed by a line, otherwise the whole screen will be filled.
@PAINT takes three parameters. The first two are the X and Y coordinates of any point
within the area to be filled-but don't specify a point on the edge or you might run into some problems. The @FLASH command flashes a specified colour on the screen from normal to reverse field and back again. It takes two parameters.

The first specifies the colour to be flashed. The second specifies the speed at which the flash is to take place. Speeds are defined by any number between 1 and 255 .

Naturally, the @OFF command which switches the flash off needs no parameters. The @TEST command looks at a pixel at a specified location and returns the type of dot plotted there in memory location 2 . So, to use this command in a BASIC program you must follow it by a PEEK (2). If no dot has been plotted it returns \emptyset. @TEST takes two coordinates. These are the X and Y coordinates of the pixel you want to test.

The @DRAW command is used to design a shape that you want displayed on the screen. But the shape will not actually appear until you use the @ROT command given below. @DRAW takes four parameters-the first of which is a string.

The string parameter actually contains the design information for the shape. The string should contain a series of digits between \emptyset and 9 in quotation marks. Each digit is an instruction on how to build up the shape.

The design starts from the X and Y position given by parameters two and three and is plotted in the plot type specified by the fourth parameter. A \emptyset then moves one pixel to the right. A 1 moves one pixel up. A 2 moves one pixel down and a 3 moves one pixel to the left. In none of these cases is anything plotted.

A 5 moves one pixel to the right and plots a dot. A 6 moves one pixel up and plots a dot. A 7 moves one pixel down and plots a dot and an 8 moves one pixel to the left and plots a dot.

A 9 tells the @DRAW command to stop drawing.

INPUT's @DRAW command will only take 88 elements in the string parameter. So in the skier program on page 188, you have to use two @DRAW commands instead of one. The second one should start at the place the first one leaves off.

The@ROT command not only displays

what has been designed with the @DRAW command, it also rotates it through a given angle and draws it at a specified size. It takes two parameters.

The first is a number between \emptyset and 7 which specifies the angle of rotation from the verticle in multiples of 45 degrees. The second specifies the magnification. A 1 will draw the figure up at the same size as specified in the @DRAW. A 2 doubles the size-and so on. The @CHAR command prints a text character up on the screen at a specified size. It takes five parameters.

The first two are the X and Y coordinates of the screen position you want the character to appear at. The third is the screen code of the character-you'll find a full list of the screen codes in your User's Guide. The fourth is the plot type and the fifth specifies the size. This can be any number between 1 and 8 , but it only magnifies the height of the letter by the amount given. The width stays the same.

The @TEXT command allows you to write text on the graphics screen. It takes six parameters.

The first two are the X and Y coordinates of the starting point of the text. The third is a string parameter which contains the text you want printed up between quotes. Pressing the CTRL and A keys at the beginning of the text will give capital letters when the text is displayed on the graphics screen. And pressing the CTRL and B keys will give ordinary, lower case letters. The screen code is not the same as the ASC() of the character.

The fourth parameter is the plot type. The fifth is the height of the letters. And the sixth specifies the number of pixels to be left blank between each letter.

THE ROUND TABLE

In this part of the hi-res graphics program there are a number of commands that deal with circles and ellipses. To draw circular shapes the computer needs to work out sines and cosines. As the ROM routine that does this takes rather a long time it is better to generate a table that the program can look up when it needs it.

This is done in BASIC. But the data table created is in RAM. Along with several of the routines in this part of the Commodore HiRes graphics article, it is located outside the protected area from $\$ C \emptyset \emptyset \emptyset$ to $\$ \mathrm{CFFF}$.

BASIC PROGRAM

The first thing to do is to enter and RUN the following BASIC program:
$20 \mathrm{sr}=57.2957795$
$3 \emptyset$ forf $=\emptyset$ to 89
40 Poke $47616+\mathrm{f}, \sin ((\mathrm{f}+.083) / \mathrm{sr})^{*} 255.9$
42 Poke $47706+\mathrm{f}, \sin ((\mathrm{f}+.916) / \mathrm{sr})^{*} 255.9$
45 Poke $47872+\mathrm{f}, \sin ((\mathrm{f}+.250) / \mathrm{sr})^{*} 255.9$
50 Poke47962 $+\mathrm{f}, \sin ((\mathrm{f}+.750) / \mathrm{sr})^{*} 255.9$
60 Poke $48128+\mathrm{f}, \sin ((\mathrm{f}+.416) / \mathrm{sr})^{*} 255.9$
70 Poke $48218+\mathrm{f}, \sin ((\mathrm{f}+.583) / \mathrm{sr})^{*} 255.9$ $8 \emptyset$ next

When you RUN this program, it POKEs a table of sines and cosines into memory. That done, you can NEW.

Because this table is located in the RAM under the BASIC interpreter itself you cannot use BASIC to save it, and we have provided a special machine-code save. After you have run the round table you can save the table (and all the machine code up to \$cfff), to disk with our routine with SYS $529 \emptyset 8$ or to tape with SYS 52901 . This routine is typed in with your monitor as follows:
ceaØ $1 \emptyset$ c3 4c d 041 a2 $\emptyset 1 \mathrm{~d} \emptyset$
cea8 $\emptyset 5 \mathrm{ff} \mathrm{ff} \mathrm{ff}$ a2 $\emptyset 8$ a9 $\emptyset 1$
cebØ aØ Ø1 20 ba ff a5 0129 ceb8 fe 8501 a 905 a2 df a \emptyset cec \emptyset ce $2 \emptyset$ bd ff a9 $\emptyset \emptyset 85 \mathrm{fb}$ cec8 a9 ba 85 fc a 2 ff a0 cf cedØ a9 fb 20 d8 ff a5 $\emptyset 1 \emptyset 9$ ced8 01850120 cc ff 6048 ceeØ $49524553 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 2$ ready.

The saved file is called "HIRES1".

THE MACHINE CODE

Using your machine code monitor (page 28Ø) type in the two blocks of code below; the first can be saved by SYS 52901 or SYS 52908 , and the second must be saved using the monitor. This typing is an arduous task that can be done in stages. You can test each command as soon as you have typed in the necessary part. The symbolic listing is in 13 modules and a preface. The first section recognizes the commands from BASIC and each subsequent section completes one or more commands.

If you have purchased a professional assembler you can alternatively enter and assemble the symbolic source directly. You can assemble the sections independently provided you incorporate a copy of the preface with each (it's called modular programming). The source published here does assemble into the hexadecimal code published here. Unfortunately this powerful program requires the full Motorola standard assemble language to define, and the sections are too large to fit into the INPUT assembler, so they cannot be assembled on your INPUT assembler.

If you want to experiment with additional facilities to your HIRES routines, e.g. to move the screen or program to fit in with other software, or to construct several high resolution screens, the symbolic source has been carefully designed to be as clear as possible and the odd comment (prefaced by "!"), has been retained in the modules.

TESTING THE PROGRAM

When testing the program, it is helpful to (i) Start it by SYS 49152 rather than SYS 52000 you sacrifice the copyright message but nothing else, (ii) Test one command at a time, (iii) If the machine stops with a row of coloured squares on the graphic screen, type in @NRM RETURN (iv) Testing the other commands omitting to do @HIRES/@MULTI is a way of viewing error messages from the HIRES program, (v) You can hit RUN/STOP RESTORE without destroying any BASIC programs or variables and then PEEK the data held in your machine code program
to see what went wrong. Finally, get rid of the monitor and type in:

SYS 52000

to switch on the hi-res commands properly.
You can then use most of the Commodore 64 graphics programs in INPUT without using Simons' BASIC. Whenever you want to reload the hi-res routines, remember to load both sections.

To SAVE anything that you have drawn on the screen do the following POKEs:

POKE43,Ø:POKE44,32:POKE45,Ø:POKE46,64

Then SAVE to tape with:

SAVE "filename",1,1

Because INPUT's hi-res graphics program occupies different areas of memory from. Simons' BASIC, you may experience some difficulty with routines that save more than one screen within the program itself.

This applies to the paged graphics programs on page 1134 and 1135, and the room designer program on pages 1269 to 1275 and 1308 to 1313.

4915278 a9 Ød 8d $\emptyset 8 \emptyset 3$ a9 c \emptyset $4916 \emptyset 8 d \emptyset 9 \emptyset 3586 \emptyset 2 \emptyset 73 \emptyset \emptyset$ 49168 c9 40 fØ Ø3 4c e7 a7 20 4917673 Ø0 a6 7a 86 fb a6 7b 4918486 fc a $\emptyset \emptyset$ a2 $\emptyset \emptyset$ dd $\emptyset \emptyset$ 49192 cf d $\emptyset 18$ e8 a9 Ød dd $\emptyset \emptyset$ $4920 \emptyset$ cf $\emptyset 292 \emptyset 73 \emptyset \emptyset$ dd $\emptyset \emptyset$ $492 \emptyset 8$ cf f \emptyset f a5 fb 857 a a5 49216 fc 857 b a9 $\emptyset \mathrm{d}$ dd $\emptyset \emptyset \mathrm{cf}$ 49224 f $\emptyset 0$ e8 d \emptyset f6 e8 c8 c8 $492322 \emptyset 79 \emptyset \emptyset c \emptyset 2 c \mathrm{~d} \emptyset \mathrm{cf} \mathrm{a} 2$ $4924 \emptyset$ Øb 6c $\emptyset \emptyset \emptyset 3$ b9 73 cf 85 49248 fb b9 74 cf 85 fc 6 c fb 49256 ØØ $\emptyset \emptyset \emptyset$ 4926420 9b b7 eØ 10 b $\emptyset \mathrm{\emptyset c} 60$ $492722 \emptyset \mathrm{fd}$ ae 209 e b7 e $\emptyset 10$ 49280 b $\emptyset 16 \emptyset$ a2 Øe 6c $\emptyset \emptyset \emptyset 3$ $49288207 \emptyset \mathrm{c} \emptyset$ 8e $20 \mathrm{~d} \emptyset 2 \emptyset 78$ $49296 \mathrm{c} \emptyset 8 \mathrm{e} 21 \mathrm{~d} \emptyset 4 \mathrm{c}$ ae a7 ff 493042070 c 0 8а Øа Øа Øа Øа $4931285 \emptyset 22 \emptyset 78 \mathrm{c}$ Ø 8а $\emptyset 5 \emptyset 2$ $4932 \emptyset 85 \emptyset 2$ a $92 \emptyset 85$ fe a9 $\emptyset \emptyset$ $4932885 \mathrm{fd} \mathrm{a} \emptyset \emptyset \emptyset 91 \mathrm{fd} \mathrm{c} 8 \mathrm{c} \emptyset$ 49336 ØØ d \emptyset f9 e6 fe a6 fe e \emptyset $493444 \emptyset$ d \emptyset ef a9 3b 8d 11 d \emptyset 49352 ad 18 d $\emptyset 9$ f $\emptyset 998$ 8d $4936 \emptyset 18 \mathrm{~d}$ a 2 ØØ bd $\emptyset \emptyset \emptyset 49 \mathrm{~d}$ $4936828^{\circ} \mathrm{a} \emptyset$ bd $\emptyset \emptyset \emptyset 59 \mathrm{~d} 28$ a1 49376 bd $\emptyset \emptyset \emptyset 69 \mathrm{~d} 28$ a2 bd $\emptyset \emptyset$ 49384 Ø7 9d 28 a3 e8 dØ e5 a5 4939220 aØ Ø0 $99 \emptyset 0 \emptyset 499$ fа $494 \emptyset \emptyset \emptyset 499$ f4 $\emptyset 599$ e8 $\emptyset 6$ c8 $49408 \mathrm{~d} \emptyset \mathrm{f} 1 \mathrm{a} 9 \mathrm{c} 88 \mathrm{~d} 16 \mathrm{~d} \emptyset 4 \mathrm{c}$ 4941634 c1 ff ff ff ff ff ff
$494242070 \mathrm{c} 08 \mathrm{ef1}$ cf 2078 49432 c \emptyset 8e f \emptyset cf $2 \emptyset 78$ c \emptyset 8e 49440 f2 cf a9 d8 8d $16 \mathrm{~d} \emptyset$ ad 49448 ๆ cf Øa Øa Øa Øa Ød f1 49456 cf 8 d f3 cf a9 ff 8d f6 49464 cf 8 d 77 cf 8 d 88 cf 8 d 49472 f9 cf a5 Ø2 8d $21 \mathrm{~d} \emptyset 4 \mathrm{c}$ $4948 \emptyset$ ae a7 $\emptyset \emptyset \emptyset$ $494882 \emptyset 73 \emptyset \emptyset 4 c 34 \mathrm{c} 1 \emptyset \emptyset \emptyset \emptyset$ $49496 \emptyset \emptyset$ $495042070 \mathrm{c} 08 \mathrm{ef6} \mathrm{cf} 2078$ 49512 c \emptyset 8e f7 cf $2 \emptyset 78$ c 0 8e $4952 \emptyset$ f8 cf ad f7 cf Øa Øa Øa 49528 Øa Ød f6 cf 8d f9 cf 4c 49536 ae a7 ff ff ff ff ff ff $495442 \emptyset 73 \emptyset \emptyset$ a9 $158 \mathrm{~d} 18 \mathrm{~d} \emptyset$ 49552 a9 9b 8d 11 d 0 a 9 c8 8d 4956016 d \emptyset a5 $\emptyset 129$ fe $85 \emptyset 1$ 49568 a2 $\emptyset \emptyset$ bd $\emptyset \emptyset \emptyset 49 \mathrm{~d} 28$ a8 49576 bd $\emptyset \emptyset \emptyset 59 d 28$ a9 bd $\emptyset \emptyset$ 49584 Ø6 9d 28 aa bd $\emptyset \emptyset \emptyset 79 d$ 4959228 ab e8 d \emptyset eb a2 $0 \emptyset$ bd $496 \emptyset \emptyset 28$ a 0 9d $\emptyset \emptyset 04$ bd 28 a1 49608 9d $\emptyset \emptyset \emptyset 5$ bd 28 a2 9d $\emptyset \emptyset$ $49616 \emptyset 6$ bd 28 a3 9d $\emptyset \emptyset \emptyset 7$ e8 49624 d \emptyset e5 a2 $\emptyset \emptyset$ bd $\emptyset \emptyset$ d8 9d 4963228 a4 bd $\emptyset \emptyset$ d9 9d 28 a5 $4964 \emptyset$ bd $\emptyset \emptyset$ da $9 d 28$ a6 bd $\emptyset \emptyset$ 49648 db 9d 28 a7 e8 dØ e5 4c 496567 a c2 $\emptyset \emptyset \emptyset \emptyset 8274 \emptyset \emptyset \mathrm{ff}$ $496642 \emptyset 9 \mathrm{~b} 78 \mathrm{c}$ c9 ØØ ๆØ Ød 49672 c9 $\emptyset 1$ ๆ 10 c9 Ø2 ø 1b $4968 \emptyset$ a6 Øb 6c ØØ Ø3 a9 15 8d 4968818 d $\emptyset \mathrm{d} \emptyset \emptyset 2 \mathrm{a9} 17$ 8d 18 $49696 \mathrm{~d} \emptyset$ а5 2Ø 2c $11 \mathrm{~d} \emptyset \mathrm{f} \emptyset 58$ $497044 \mathrm{c} 9 \emptyset$ c1 a9 3b 8d $11 \mathrm{~d} \emptyset$ 49712 ad 18 d $\emptyset 29$ f $\emptyset 9 \emptyset 88 d$ $4972 \emptyset 18$ dØ a5 0129 fe $85 \emptyset 1$ 49728 a2 $\emptyset \emptyset$ bd 28 a4 9d $\emptyset \emptyset$ d8 49736 bd 28 a5 9d $\emptyset \emptyset$ d9 bd 28 49744 a6 9d $\emptyset \emptyset$ da bd 28 a7 9d 49752 ØØ db e8 d 0 e 5 a2 $\emptyset \emptyset$ bd $4976 \emptyset 28$ a8 9d $\emptyset \emptyset \emptyset 4$ bd 28 a 9 49768 9d $\emptyset \emptyset \emptyset 5$ bd 28 aa 9d $\emptyset \emptyset$ $49776 \emptyset 6$ bd 28 ab 9d $\emptyset \emptyset \emptyset 7$ e8 49784 d \emptyset e5 a5 $\emptyset 1 \emptyset 9 \emptyset 185 \emptyset 1$ 49792 4c ae a7 ff ff ff ff ff 49800 a9 10 2c $16 \mathrm{~d} \emptyset \mathrm{f} \emptyset \emptyset 6$ Øe $498 \emptyset 8$ e \emptyset cf $2 e$ e 1 cf ad e \emptyset cf $49816290749078 d$ ef cf ad 49824 e2 cf 2907 Øa Øa 85 fd 49832 ad e1 cf 4 a ad e \emptyset cf 6a 49840 4a 4a 85 fb ad e2 cf 4a 49848 4a 4a 85 fc $4 a 66$ fd 4a 4985666 fd 1865 fc 692085 49864 fe a5 fb Øa Øa Øa $9 \emptyset \emptyset 3$ 49872 e6 fe 1865 fd 85 fd 90 $4988 \emptyset \emptyset 2$ e6 fe $6 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$ $498882 \emptyset 73 \emptyset \emptyset 4 \mathrm{c}$ eb c2 $\emptyset \emptyset \emptyset 2$ $498962 \emptyset \mathrm{fd}$ ae $2 \emptyset 8$ a ad $2 \emptyset$ f7 49904 b7 a5 153030 c9 0190

49912 Ø8 dØ 2a a5 14 c9 $4 \emptyset$ bØ $4992 \emptyset 242 \emptyset$ fd ae $2 \emptyset 9 e b 7$ eØ $49928 \mathrm{c} 9 \mathrm{~b} \emptyset 1 \mathrm{a} 6 \emptyset \mathrm{ff} \mathrm{ff} \mathrm{ff}$ $499362 \emptyset \mathrm{fd}$ ae $2 \emptyset 9 \mathrm{e}$ b7 e $\emptyset \square 3$ $499449 \emptyset 12$ a9 10 2c 16 d 0 f 0 49952 Ø4 еØ $\emptyset 59 \emptyset \emptyset 76868$ a6 $4996 \emptyset$ Øe 6c $\emptyset \emptyset \emptyset 38$ e e3 cf $6 \emptyset$ $49968 \mathrm{ff} f f \mathrm{ff} \mathrm{ff} \mathrm{ff} \mathrm{ff} \mathrm{ff}$ 49976 a9 ØØ 8d ff cf 20 e 0 c2 49984 a5 148 d eØ cf a5 15 8d 49992 e1 cf 8 e e2 cf $2 \emptyset 10$ c3 $5 \emptyset \emptyset \emptyset \emptyset 4 \mathrm{c} 58$ c3 ØØ ØØ ØØ ØØ ØØ $500 \emptyset 82088 \mathrm{c} 2$ ad e2 cf c9 c9 $50 \emptyset 1690 \emptyset 34 \mathrm{c} 53 \mathrm{c} 4$ ad e1 cf 5002430 Ød c9 Ø190 Øc dø Ø7 $5 \emptyset 032$ ad eØ cf c9 $4 \emptyset 9 \emptyset \emptyset 34 \mathrm{c}$ $50 \emptyset 4053 \mathrm{c} 4 \mathrm{a} 91 \emptyset 2 \mathrm{c} 16 \mathrm{~d} 0 \mathrm{~d} \emptyset$ $5 \emptyset \emptyset 4838$ ad e3 cf c9 ØØ d \emptyset Øf $5 \emptyset 056$ a $\emptyset \emptyset$ ae ef cf b1 fd 3d $5 \emptyset \emptyset 64$ a8 cf 91 fd 4c $\emptyset 6$ c4 c9 $5 \emptyset \emptyset 72 \emptyset 2 \mathrm{~d} \emptyset \emptyset f \mathrm{a} \emptyset \emptyset \emptyset$ ae ef cf $50 \emptyset 8 \emptyset$ b1 fd 5 da a cf 91 fd 4 c $50 \emptyset 88$ Ø6 c4 a $\emptyset \emptyset$ ae ef cf b1 $5 \emptyset \emptyset 96 \mathrm{fd} 1 \mathrm{~d}$ a \emptyset cf $91 \mathrm{fd} 4 \mathrm{c} \emptyset 6$ 50104 c4 ad ef cf 4a 8d ef cf $5 \emptyset 112$ ad e3 cf c9 $\emptyset \emptyset \mathrm{d} \emptyset \emptyset 62 \emptyset$ $5 \emptyset 12 \emptyset 5 \mathrm{cc4} 4 \mathrm{c} \emptyset 6 \mathrm{c} 4 \mathrm{c} 9 \emptyset 4 \mathrm{~d} \emptyset$ 50128 Øf a $\emptyset \emptyset \emptyset$ ae ef cf b1 fd $501365 d$ b4 cf 91 fd 4 c Ø6 c4 50144 c9 Ø1 dØ Øb $2 \emptyset 5 \mathrm{c}$ c4 1d 50152 b8 cf $91 \mathrm{fd} 4 \mathrm{c} \square 6 \mathrm{c} 4 \mathrm{c} 9$ $50160 \emptyset 2 d \emptyset \emptyset b 2 \emptyset 5 c \mathrm{c} 41 \mathrm{dbc}$ 50168 cf 91 fd 4 c 06 c 4205 c 50176 c4 1d c0 cf 91 fd a5 fe 50184492085 fe 46 fe 66 fd 5019246 fe 66 fd 46 fe 66 fd $502 \emptyset \emptyset$ a 90445 fe 85 fe aØ $\emptyset \emptyset$ $5 \emptyset 2 \emptyset 8$ ad f9 cf c9 ff dø 1a a9 $50216102 \mathrm{c} 16 \mathrm{~d} \emptyset \mathrm{f} \emptyset 25 \mathrm{ad} \mathrm{f} 3$ 50224 cf 91 fd 18 a5 fe 69 d 4 5023285 fe ad f2 cf 91 fd 10 5024012 ea ad f9 cf 91 fd 18 50248 a5 fe 69 d4 85 fe ad f8 50256 cf 91 fd ad ff cf $\emptyset \emptyset 1$ 50264604 c ae a7 a $\emptyset \emptyset \emptyset$ ae ef 50272 cf b1 fd 3 d bØ cf 91 fd $5028060 \emptyset \emptyset$ $5 \emptyset 288$ a9 $\emptyset 18 \mathrm{dff}$ cf $2 \emptyset \mathrm{e} \emptyset \mathrm{c} 2$ 50296 a5 148 de e cf a5 158 d 50304 e1 cf 8 e e2 cf 20 e 8 c2 50312 a5 $148 \mathrm{~d} \mathrm{~d} \emptyset$ cf a5 158 d 50320 d1 cf 8 e d 2 cf 2010 c 3 $5 \emptyset 328$ ad d \emptyset cf 38 ed e \emptyset ef 8 d $5 \emptyset 336$ 3c $\emptyset 3$ ad d1 cf ed e1 cf $5 \emptyset 344$ 8d 3d $\emptyset 3 \mathrm{~b} \emptyset \emptyset \mathrm{~b}$ a9 ff 8d $5 \emptyset 3523 f \emptyset 38 \mathrm{~d} 4 \mathrm{~b} \emptyset 34 \mathrm{c}$ c2 c4 50360 a9 018 d 3 f Ø3 a9 ØØ 8d 503684 b Ø3 ad d2 cf 38 ed e2 50376 cf $8 \mathrm{~d} 3 \mathrm{e} \emptyset 3 \mathrm{~b} \emptyset \emptyset 8 \mathrm{a} 9 \mathrm{ff}$ $503848 \mathrm{~d} 4 \emptyset \emptyset 34 \mathrm{cdb} \mathrm{c} 4 \mathrm{a} 9 \emptyset 1$ $5 \emptyset 392$ 8d $4 \emptyset \emptyset 3$ ad $3 f \emptyset 3$ 8d 41
$50400 \emptyset 3$ ad 4b 038 d 4 c Ø3 a9 $504 \emptyset 8 \emptyset 08 d 42 \emptyset 3$ ad $3 f \emptyset 3 \mathrm{c} 9$ $5 \emptyset 416 \mathrm{ff}$ Ø Øf ad 3c $\emptyset 38 \mathrm{~d} 43$ $5 \emptyset 424 \emptyset 3$ ad 3d $\emptyset 3$ 8d $44 \emptyset 34 c$ $5 \emptyset 43215$ c5 ad e \emptyset cf 38 ed d \emptyset 50440 cf 8 d 43 Ø3 ad e1 cf ed $5 \emptyset 448$ d1 cf 8d $44 \emptyset 3$ ad $4 \emptyset \emptyset 3$ 50456 c $9 \mathrm{ff} \mathrm{f} \emptyset \mathrm{e}$ ad 3 e Ø3 8d 5046445 Ø3 a9 ØØ 8d 46 Ø3 4c 5047239 c5 ad e2 cf 38 ed d2 50480 cf 8d $45 \emptyset 3$ a9 Ø0 8d 46 50488 Ø3 ad $43 \emptyset 338$ ed $45 \emptyset 3$ 50496 ad $44 \emptyset 3$ ed $46 \emptyset 3$ b 026 $5 \emptyset 504$ a9 ØØ 8d 41 Ø3 8d 4c Ø3 50512 ad $40 \emptyset 38 d 42$ Ø3 ad 43 $5 \emptyset 52 \emptyset \emptyset 3$ ae $45 \emptyset 38$ d $45 \emptyset 38$ e 5052843 Ø3 ad $44 \emptyset 3$ ae $46 \emptyset 3$ 505368 e 44038 d 46 Ø3 ad 44 $5 \emptyset 544$ Ø3 6a ad 43 Ø3 6a 8d 47 $50552 \emptyset 3$ a9 $\emptyset \emptyset 8 d 49 \emptyset 38$ 8 4a $50560 \emptyset 38 \mathrm{~d} 48$ Ø3 ad eØ cf 8d 50568 d \emptyset cf ad e1 cf 8 d d 1 cf 50576 ad e2 cf 8 d d2 cf ad d \emptyset 50584 cf 8 de e cf ad d1 cf 8d 50592 e1 cf ad d2 cf 8 d e2 cf 506002058 c3 ad 470318 6d $5060845 \emptyset 38 d 47 \emptyset 3$ ad $48 \emptyset 3$ 50616 6d $46 \emptyset 38 d 48$ Ø3 ad 47 $50624 \emptyset 338$ ed $43 \emptyset 3$ ad $48 \emptyset 3$ 50632 ed 44 Ø3 $9 \emptyset 33$ ad $47 \emptyset 3$ 5064038 ed 43 Ø3 8d 47 Ø3 ad $5064848 \emptyset 3$ ed $44 \emptyset 38 d 48 \emptyset 3$ 50656 ad dØ cf $186 \mathrm{~d} 3 \mathrm{f} \emptyset 38 \mathrm{~d}$ $50664 \mathrm{~d} \emptyset$ cf ad d1 of 6d 4b Ø3 50672 8d d1 cf ad d2 of 18 6d $5068040 \emptyset 38 \mathrm{~d}$ d2 cf 4c 1d c6 50688 ad dØ of 186 d 41 Ø3 8d $50696 \mathrm{~d} \emptyset \mathrm{cf}$ ad d1 of 6d 4c 03 507048 d 11 cf ad d2 of 186 d $5071242 \emptyset 38 d$ d2 cf ee $49 \emptyset 3$ $5072 \emptyset$ d $\emptyset 3$ ee $4 \mathrm{a} \emptyset 3$ ad $4 \mathrm{a} \emptyset 3$ 50728 cd $44 \emptyset 3$ b $\emptyset 34 c 96$ c5 50736 ad $49 \emptyset 3$ cd $43 \emptyset 3$ b $\emptyset 3$ 507444 c 96 c5 ad ff cf c9 $\emptyset 1$ 50752 d $\emptyset \emptyset 3$ 4c ae a7 $60 \emptyset \emptyset \emptyset \emptyset$ $50760 \emptyset \emptyset$ 50768 a9 028 dff cf 20 e \emptyset c2 50776 a5 148 8d bb c6 a5 15 8d 50784 bc c6 8e bd c6 20 e8 c2 50792 a5 148 8d be c6 a5 15 8d $508 \emptyset \emptyset$ bf c6 8e c \emptyset c6 2010 c 3 $508 \emptyset 8$ ad c@ c6 38 ed bd c6 f \emptyset 50816379035 ad bd c6 8d c1 50824 c6 ad bb c6 8d eØ cf ad 50832 bc c6 8d e1 cf ad be c6 $5084 \emptyset 8 \mathrm{~d}$ d \emptyset cf ad bf c6 8d d1 50848 cf ad c1 c6 8d d2 cf 8d 50856 e2 cf cd c \emptyset c6 f $\emptyset 9$ ee 50864 c1 c6 2098 c4 4c 89 c6 50872 4c ae a7 $\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$ $50880 \emptyset \emptyset$
$5088800 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset \emptyset$ 50896 a9 018 dff cf 20 e 0 c 2 $509 \emptyset 4$ a5 14 8d a9 c7 a5 15 8d 50912 aa c7 8e ad c7 20 fd ae $50920209 e b 78 e$ af c7 2010 $5 \emptyset 928$ c3 2078 c@ 8a f $\emptyset 68$ 8d 50936 ae c7 20 ØØ c7 4c ae a7 50944 ad af c7 Øa Øa Øa 8d 27 50952 c7 ad af c7 4a 4a 4a 4a 509604 a Ø9 d $\emptyset 8 \mathrm{~d} 28$ c7 a2 $\emptyset \emptyset$ 50968 ad Øe dc 29 fe 8 d Øe dc 50976 a5 0129 fb 8501 bd ff $5 \emptyset 984 \mathrm{ff} 9 \mathrm{~d}$ a7 $\emptyset 2$ e8 eØ $\emptyset 8 \mathrm{~d} \emptyset$ 50992 f5 a5 $01 \emptyset 9 \emptyset 485 \emptyset 1$ ee $510 \emptyset \emptyset$ Øe dc a2 $\emptyset \emptyset 8 \mathrm{e}$ a7 c7 bd $510 \emptyset 8$ a7 02204 e c7 ae a7 c7 51016 e 8 e $\emptyset 8$ d \emptyset ef $6 \emptyset 8 \mathrm{~d}$ a6 51024 c7 ae ae c7 8e a5 c7 ad 51032 a9 c7 8d ab c7 8d eØ cf 51040 ad aa c7 8d ac c7 8d e1 $51 \emptyset 48$ cf a@ Ø8 8c a8 c7 ad ad 51056 c 78 d e2 cf ad a6 c7 39 51064 9f cf $\emptyset \emptyset 32058 \mathrm{c} 3 \mathrm{ad}$ 51072 ab c7 $1869 \emptyset 18 d$ ab c7 $51 \emptyset 8 \emptyset 8 d$ e \emptyset cf ad ac c7 $69 \emptyset \emptyset$ 51088 8d ac c7 8d e1 cf ac a8 51096 c7 88 d 0 cf ee ad c7 ce $51104 \mathrm{a} 5 \mathrm{c} 7 \mathrm{~d} 0 \mathrm{~b} 360 \emptyset 0 \emptyset \emptyset \emptyset \emptyset$ $51112 \emptyset 0 \emptyset \emptyset$ 51120 a 9018 dff cf 20 e \emptyset c2 51128 a5 148 d a9 c7 a5 15 8d 51136 aa c7 8e 97 c8 a9 ff 85 51144 Ød 85 Øe a9 6a a2 $\emptyset \emptyset 85$ 5115249864 a 8e 9a c8 20 fd 51160 ae 20 b1 a9 a5 6a 8d 9b 51168 c8 a5 6b 8d 12 c8 a5 6c 511768 d 13 c8 2010 c3 2078 51184 cØ 8a f $\emptyset c 8$ d ae c7 $2 \emptyset$ 5119278 c \emptyset 8e 98 c8 4c 06 c8 $5120 \emptyset 2 \emptyset 9$ e b7 4c ae a7 ae 9b 51208 c8 dØ Ø3 4c 94 c8 ae 9a 51216 c8 bd ff ff 8d 9c c8 c9 5122412 f0 13 c 992 f 017 c 9 5123220 b 02 b c9 $\emptyset 1$ ø 17 c 9 $51240 \emptyset 2$ f0 1b 4c 80 c8 a9 80 51248 8d 99 c8 4c 80 c8 a9 $\emptyset \emptyset$ 512568 d 99 c 84 c 80 c 8 a9 d \emptyset 512648 d 12 c 74 c 80 c 8 a9 d8 51272 8d 12 c7 4c 80 c8 2980 $512804 a 8 d 9 d$ c8 ad 9c c8 29 51288 3f Ød 9d c8 Ød 99 c8 8d 51296 af c7 8e 9a c8 ad 97 c8 51304 8d ad c7 2000 c 7 ad a9 51312 c 718 6d 98 c8 8d a9 c7 51320 ad aa c7 69 Ø0 8d aa c7 51328 ae 9a c8 e8 ec 9b c8 fø 51336 Ø6 8e 9a c8 4c Øe c8 a9 $51344 \mathrm{~d} \emptyset$ 8d 12 c 74 c ae a7 $\emptyset \emptyset$ $51352 \emptyset \mathrm{ff} f$ 51360207300 a9 01 8d ff cf 51368 a9 ff 85 Ød 85 Øe a9 6a

51376 a2 Ø0 $8549864 a 8 e$ e8 51384 cf 20 b1 a9 a5 6a 8d e9 51392 cf a5 6b 8d fa c8 a5 6c $5140 \emptyset 8 \mathrm{~d} \mathrm{fb}$ c8 $2 \emptyset$ e 8 c2 a5 14 $514088 \mathrm{de4}$ cf a5 $158 \mathrm{de5}$ cf 514168 e e6 cf $2 \emptyset 1 \emptyset$ c3 a $\varnothing 8 \emptyset$ 514248 c eb cf 8 c ec cf ac dc 51432 cf 8 c ea cf a9 2c 8d $\emptyset 2$ 51440 ca ae e8 cf ec e9 cf 10 5144830 bd ff ff $8 \mathrm{~d} \mathrm{e7} \mathrm{cf} \mathrm{c9}$ 5145639 f0 $26 \mathrm{c9} 30 \mathrm{f} 025 \mathrm{c} 9$ 5146431 f 0 d c9 $32 \mathrm{f} \emptyset$ Øe c9 5147233 f0 Øe c9 35 f0 15 c9 $5148036 \mathrm{f} \emptyset 3 \mathrm{~d} 9937 \mathrm{f} 065 \mathrm{c} 9$ $5148838 \mathrm{~d} \emptyset \emptyset 34 \mathrm{cb}$ b c9 4c e1 51496 ce 4 c ae a7 ad ec of 18 $515046 d$ d5 cf $8 d$ ec cf ad e4 51512 cf 6 d ca cf 2013 ca 6 d 51520 cb cf 8 d e5 cf ad eb cf 51528186 d d9 cf 8d eb cf ad 51536 e6 cf 6d cf cf 4c d9 c9 51544 ad ec cf 186 d d6 cf 8d 51552 ec cf ad e 4 cf 6 d c 4 cf 515602013 ca 6 d c5 cf 8 d e5 51568 cf ad eb cf 186 d da cf 51576 8d eb cf ad e6 cf 6d cc 51584 cf 4 c d9 c9 ad ec of 18 51592 6d d7 cf 8d ec of ad e4. 51600 cf 6 d c 6 cf $2 \emptyset 13$ ca 6 d 51608 c 7 cf 8 d e5 cf ad eb cf 5161618 6d db cf 8d eb cf ad 51624 e6 cf 6d cd cf 4 c d9 c9 51632 ad ec cf $186 \mathrm{~d} \mathrm{d4}$ cf 8 d 51640 ec cf ad e4 cf 6 d c8 cf 516482013 ca 6 d c9 cf 8 d e5 51656 cf ad eb cf 186 d d8 cf 516648 d eb cf ad e6 cf 6d ce 51672 cf cd e6 cf f $\emptyset 88$ d e6 $5168 \emptyset$ cf a9 $2 \emptyset 8 \mathrm{~d} \emptyset 2$ ca ad e7 51688 cf c9 343018 ad e4 cf 516968 d e Ø cf ad e5 cf 8d e1 51704 cf ad e6 cf 8 d e2 cf 8 e 51712 e 8 cf 2058 c 3 ce ea cf $5172 \emptyset$ f $\emptyset 34$ c ec c8 ee e8 cf 517284 ce6 c8 08 cd e4 cf f0 51736 Øa 48 a $92 \emptyset 8 \mathrm{~d} \emptyset 2$ ca 68 517448 d e4 cf ad e5 cf 2860 51752 ff ff ff ff ff ff ff 51760 a9 Ø2 8d ff cf 20 e 0 c2 51768 a5 148 d e4 cf a5 158 d 51776 e5 cf 8 e e 6 cf $2 \emptyset$ e 8 c2 51784 a5 148 d e7 cf a5 158 d 51792 e 8 cf 8 e e 9 cf 2010 c3 51800 ad e4 cf 186 d e7 cf 8 d 51808 ea cf ad e5 cf 6 d e8 cf 518168 d eb cf c9 $0130 \emptyset 9 \mathrm{~d} \emptyset$ 5182417 ad ea cf c9 401010 51832 ad e6 cf 186 d e 9 cf 8 d 51840 ec cf b $\emptyset \emptyset 4$ c 9 c $99 \emptyset \emptyset 5$ 51848 a2 Øb 6c $\emptyset \emptyset \emptyset 3$ ad e4 cf 518568 de e cf ad e5 cf 8d e1

51864 cf ad e6 cf 8d e2 cf 8d 51872 d2 cf ad ea cf 8 d d \emptyset cf 51880 ad eb cf 8 d d1 cf 2098 51888 c4 ad ea cf 8 d e 0 cf 8 d 51896 d \emptyset cf ad eb cf 8 d e 1 cf $519048 d$ d1 cf ad ec cf 8d d2 51912 cf ad e 6 cf 8 d e2 cf $2 \emptyset$ 5192098 c4 ad ec cf 8 d e2 cf 51928 8d d2 cf ad e4 cf 8d d \emptyset 51936 cf ad e5 cf 8 d d1 cf ad 51944 ea cf 8 d e \emptyset cf ad eb cf 51952 8d e1 cf $2 \emptyset 98$ c4 ad e6 51960 cf 8 d d2 cf ad ec cf 8 d 51968 e2 cf ad e4 cf 8 d e \emptyset cf 51976 8d d 0 cf ad e5 cf 8 d e 1 51984 cf 8 d d1 cf $2 \emptyset 98$ c4 4c 51992 ae a7 ff ff ff ff ff 52000 a9 ff 85338537 a9 1f 52008853485382018 e5 a9 $52 \emptyset 16 \emptyset 68 \mathrm{~d} 2 \emptyset \mathrm{~d} \emptyset$ a9 $\emptyset \mathrm{f} 8 \mathrm{~d} 21$ $52 \emptyset 24$ d 0 a2 $\emptyset \emptyset$ bd 5 d cb $2 \emptyset$ d2 $52 \emptyset 32$ ff e8 eØ $2 e \mathrm{~d} \emptyset f 5$ a5 37 5204038 e5 2d aa a5 38 e5 2e 5204820 cd bd a9 60 a 0 e4 20 $52 \emptyset 56$ 1e ab 4c $\emptyset \emptyset$ c \emptyset 1f $122 \emptyset$ 520642020202020202020 52072494 e 505554204849 520805245532047524150 520884849435320202020 520962020202020202020 5210420 20 $2 \emptyset \mathrm{ff} \mathrm{ff} \mathrm{ff} \mathrm{ff}$ $52112209 \mathrm{bb7e}$ e $\emptyset 810 \emptyset 88 \mathrm{e}$ $5212 \emptyset \mathrm{ff}$ cf 8 a Øa aa $10 \emptyset 5 \mathrm{a} 9$ 52128 Øb 6c $\emptyset \emptyset \emptyset 3$ bd 31 cc 8d 52136 c4 cf bd 32 cc $8 d$ c5 cf 52144 bd 3d cc $8 d$ c8 cf bd 3e 52152 cc 8 d c9 cf bd 35 cc 8 d 52160 ca cf bd 36 cc 8 d cb cf 52168 bd 39 cc $8 d$ c6 cf bd 3a 52176 cc 8 d c 7 cf ae ff cf bd $521844 d$ cc 8 d cc of bd 51 cc 52192 8d cd cf bd 53 cc 8 d ce 52200 cf bd $4 f$ cc 8 d cf cf bd $522085 \mathrm{bcc} 8 \mathrm{~d} \mathrm{d4} \mathrm{cf}$ bd 5 fcc 522168 d d 5 cf bd 5 d cc 8 d d 6 52224 cf bd 61 cc $8 d \mathrm{~d} 7 \mathrm{cf}$ bd 5223261 cc $8 d \mathrm{~d} 8 \mathrm{cf}$ bd 5d cc $522408 d \mathrm{~d} 9 \mathrm{cf}$ bd 5b cc 8d da 52248 cf bd 5 fcc 8 d db cf 20 52256 fd ae $2 \emptyset 9 \mathrm{eb7} 8 \mathrm{e} \mathrm{dc} \mathrm{cf}$ 52264 8a d $\emptyset 03$ 4c $9 f$ cb 4c ae 52272 a7 ØØ ØØ ØØ ØØ Ø1 ØØ ØØ $5228 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{ff} \mathrm{ff} \mathrm{ff} \mathrm{ff}$ $52288 \mathrm{ff} \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 1 \emptyset \emptyset \emptyset \emptyset$ $52296 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \mathrm{ff} \mathrm{ff} \mathrm{ff}$ f \emptyset $52304 \emptyset \emptyset \emptyset 1 \emptyset \emptyset \emptyset \emptyset \mathrm{ff} \mathrm{ff} \mathrm{ff} \emptyset \emptyset$ $52312 \emptyset \emptyset \emptyset 1 \emptyset 0 \emptyset \emptyset 4 \mathrm{~b}$ Ø b6 ØØ $5232 \emptyset$ b6 $\emptyset \emptyset 4 \mathrm{~b} \emptyset \emptyset 4 \mathrm{~b} \emptyset \emptyset \mathrm{~b} 6 \emptyset \emptyset$
 5233620 e \emptyset c2 a5 148 de e cf 52344 a5 158 de e cf 8 e e2 cf
$523522 \emptyset 88$ cc 4c ae a7 ff ff $523602 \emptyset 88 \mathrm{c} 2 \mathrm{a} \emptyset \emptyset \emptyset$ ad $16 \mathrm{~d} \emptyset$ $523682910 \mathrm{~d} \emptyset$ Øf ae ef cf bd 52376 a \emptyset cf 31 fd f $\emptyset 2$ a9 01 $5238485 \emptyset 260$ ad ef cf 4a aa 52392 a $\emptyset \emptyset$ bd c \emptyset cf d \emptyset eb ad 52400 1e cd $18690169 \emptyset \emptyset 8 d$ 52408 1e cd cd 1 f cd d 05 b a9 52416 Øด 8d 1e cd a5 fb 48 a5 52424 fc 48 a5 fd 48 a5 fe 48 524329848 a9 7f 8d Ød dc a9 $52440 \emptyset \emptyset 85 \mathrm{fb} 85 \mathrm{fd}$ a9 0485 52448 fc a $9 \mathrm{~d} 885 \mathrm{fe} \mathrm{a} \emptyset \emptyset 0 \mathrm{~b} 1$ 52456 fd 29 Øf cd 1d cd d $\emptyset \emptyset 6$ 52464 b1 fb 498091 fb c8 d \emptyset 52472 Ø4 e6 fc e6 fe cØ e8 d \emptyset 52480 e6 a5 fc c9 $07 \mathrm{~d} \emptyset$ e 06 52488 a8 6885 fe 6885 fd 68 52496 a5 fc 6885 fb a9 818 d 52504 Ød dc 4c 31 ea ff $\emptyset 1 \emptyset \emptyset$ $525122070 \mathrm{c} \square 8 \mathrm{e} 1 \mathrm{~d} \mathrm{~cd} 20 \mathrm{fd}$ $5252 \emptyset$ ae 209 e b7 8e 1 f cd a9 $52528 \emptyset \emptyset 8 d 1$ e cd ad 1403 c 9 52536 af $\mathrm{f} \emptyset 14$ a9 7f 8d $\emptyset \mathrm{d}$ dc 52544 a9 af 8d 1403 a9 cc 8d $5255215 \emptyset 3$ a9 $818 \mathrm{~d} \emptyset \mathrm{~d}$ dc 4c 52560 ae a7 $\emptyset 0 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 0 \emptyset \emptyset$
 $525762073 \emptyset \emptyset$ a9 $0 \emptyset 8 \mathrm{~d} 1 \mathrm{fcd}$ 52584 4c ae a7 ØØ ØØ ØØ ØØ ØØ 5259220 d 5 cd 20 eb cd 2023 $526 \emptyset \emptyset$ се $\emptyset \emptyset 62 \emptyset \emptyset \emptyset 4 \emptyset 4 \mathrm{c}$ ае 52608 a7 6c $\emptyset \emptyset \emptyset 3 \mathrm{ff} \mathrm{ff} \mathrm{ff} \mathrm{ff}$ 52616 ff ff ff ff ff ff ff 5262420 d 5 cd 20 ff cd 4 c 76 52632 cd ff ff ff ff ff ff
5264020 d 5 cd 203 fce a5 14 52648 8d b3 41 8d b0 41 a5 15 52656 8d b4 412023 ce \emptyset c9 52664 ad d \emptyset cf 8 d e \emptyset cf ad d1 52672 cf 8 d e1 cf ad d2 cf 8 d 52680 e2 cf $2 \emptyset 58$ c3 a9 2c $2 \emptyset$ 526884 f 404 c 98 c 4 a 9018 d 52696 ff cf $2 \emptyset$ e \emptyset c2 a5 158 d $527 \emptyset 4 \mathrm{~d} \emptyset$ cf a 5158 d 11 cf 8 e 52712 d2 cf 60 a $9008 d$ b3 41 52720 8d b4 $418 d 3 f 408 d 4 b$ 5272840 a9 018 d 23406020 52736 3f ce a5 148 d b3 41 a5 5274415 8d b4 $41203 f$ ce a5 5275214 8d $3 f 40$ a5 $158 d 4 b$ 527604020 fd ae 20 ge b7 8e 5276823406020 e 8 c2 a5 14 52776 8d ad 41 a5 158 d ae 41 527848 e af 412010 c 3 ad ad $5279241 \mathrm{~d} \emptyset \emptyset 3$ ad af $416 \emptyset 2 \emptyset$ $5280 \emptyset$ fd ae 208 ad 20 f7 b7 $528 \emptyset 8$ a5 15 c9 ØØ Ø $\emptyset 6$ a5 14 52816 c9 68100160 a5 1438 52824 e 9688514 a5 15 e 901 528328515 d Ø e4 $6 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 2$
$5284000 \emptyset 0 \emptyset 0 \emptyset \emptyset \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0$
 52856 ØØ ØØ ØØ ØØ 8274 ØØ ff 52864 a9 018 dff cf a2 018 e 52872 1b 43 a2 ff $8 \mathrm{e} \emptyset \emptyset$ bf $2 \emptyset$ 52880 eØ c2 a5 14 8d 1843 a5 5288815 8d 1943 8e 1a 4320 $528961 \emptyset$ c3 4c d 041 ff ff ff 52904 ff ff ff ff ff ff ff 52912 ff ff ff ff ff ff ff ff $52920 \mathrm{ff} f f \mathrm{ff}$ ff fe ff ff ff
 $52936 \emptyset \emptyset \emptyset 0 \emptyset 0 \emptyset \emptyset \emptyset \emptyset \emptyset 0 \emptyset \emptyset \emptyset 0$ $52944000000 \emptyset 00000 \emptyset 000$ $52952 \emptyset 0 \emptyset \emptyset$ $52960 \emptyset 2$
 52976 ØØ ØØ ØØ Ø2 ØØ ØØ ØØ bf 52984 ØØ ØØ ØØ ØØ 8274 ØØ ff 5299243 4f 4c 4f 5552 Ød 48 $530 \emptyset 049524553$ Ød 4d 55 4c $53 \emptyset \emptyset 85449$ Ød 4e 52 4d Ød 4c $530164 f 5743$ 4f 4c Ød 4849 $53024434 f 4 c$ Ød 50 4c 4f 54 53032 Ød 4c 494 e 45 Ød 42 4c $53 \emptyset 404 \mathrm{f} 43 \mathrm{4b}$ Ød $5 \emptyset 41$ b5 Ød 53048544553540 d 435345 5305654 Ød 524543 Ød 4348 530644152 Ød 54455854 Ød 53072415243 Ød 414 e 474 c 53080 Ød 43495243 4c 45 Ød 5308844524157 Ød $524 f 54$ 53096 Ød 464 c 415348 Ød 4f 531044646 Ød 88 c0 98 cØ 10 53112 c1 88 c1 60 c1 50 c1 38 53120 c3 70 c4 50 c6 80 ce 70 53128 cc $\emptyset \emptyset$ c2 30 ca d 0 c6 bØ 53136 c7 9 9 cd a 0 cd $7 \emptyset$ cd a \emptyset 53144 c8 90 cb 20 cd 60 cd 20 $53152 \emptyset 1 \emptyset 204 \emptyset 810204080$ 53160 fe fd fb f7 ef df bf $7 f$ 53168 fc f 3 cf 3 f Ø3 Øc $30 \mathrm{c} \emptyset$ 53176 Ø2 Ø8 20 $80 \emptyset 1 \emptyset 41040$ 53184 Ø3 Øc 30 c 1d 43 ØØ ØØ 53192 Ø1 $\emptyset 8 \emptyset 3 \emptyset \emptyset \emptyset \emptyset$ af $\emptyset \emptyset \emptyset 1$ $532 \emptyset 063$ a1 66 a4 $0137 \emptyset 072$ 53208 d $10339 \emptyset 6 \emptyset \emptyset \emptyset 0 \emptyset \emptyset \emptyset \emptyset$ $53216 \emptyset 2$ $5322400 \emptyset \emptyset$ $53232 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 2 \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset$ af 53240 ØØ ØØ Ø0 64 ØØ Øа Ø0 ØØ 16384 ad b3 41 8d bø 41 a9 20 $16392204 f 4020$ ac 40 a9 bb 1640020 a6 4020 ac 40 a 9 bc 1640820 a6 4020 ac 40 ad b3 16416411869 ff 8 d b3 4190 16424 Ø3 ee b4 41 ae b4 41 ๆ \emptyset 16432 Øc c9 $6890 \emptyset 8$ e 968 ce 16440 b4 41 8d b3 4138 e9 ff 1644890 be ed 2340 b 0 b9 ad 16456 b4 41 c9 ff dØ b2 60 8d

164645241 ad b4 41 dØ $2 f$ ad 16472 bø 41 c9 5a bø $\emptyset 6$ a2 $\emptyset \varnothing$ 16480 a0 01 d0 3a c9 b4 b0 Øf 16488 a9 Øe 18 ed bø 418 d bø 1649641 a2 00 a0 00 f0 27 a2 1650401 ad b0 4138 e9 b4 8d 16512 b0 41 a0 $\emptyset 0$ fø 18 ad bØ 165204138 e9 Øe 30 e $98 d$ bø 1652841 a9 b4 18 ed b0 $418 d$ 16536 b0 41 a2 $\emptyset 1$ a 0018 ecb 1654440 8c 1b 41 a9 ba 8d b7 $16552408 \mathrm{~d} \emptyset 841$ ae b0 41 a5 $16560 \emptyset 129$ fe 8501 bd $\emptyset 0$ ff 165688 dd 8541 ad ad 418 d 91 1657641 ad ae 418 d 894120 $165847 \mathrm{c} 41 \mathrm{a9} \mathrm{ff} \mathrm{d} 0 \mathrm{bb}$ ad b1 165924118 6d d 0 cf a8 ad b2 1660041 dd d1 cf f0 1b c9 02 16608 b0 47 c0 $4090134 c 68$ 1661641 ad d \emptyset cf 38 ed b1 41 16624 a 8 ad d1 cf ed b2 4190 $166326 f 8 \mathrm{de}$ ef 8 ce e cf a9 $1664 \emptyset$ b4 18 ed b0 41 aa bd $\emptyset \emptyset$ 16648 ff 8 d 8541 ad af 418 d 166569141 a9 Ø0 8d 894120 $166647 c 41$ a9 ff dØ Øf ad b1 166724118 dd d2 cf b0 41 c9 16680 c8 b0 3d 9009 ad d2 cf 1668838 ed b1 $4190328 d$ e2 16696 cf 48 ac e \emptyset cf 8 c 5 c 41 16704 a2 $\emptyset 56848$ dd b5 41 d \emptyset 167120698 dd bb 41 f 06 ca 1672010 f0 2058 c 3 a 00568 1672899 b5 41 a9 ff 99 bb 41 16736881002 a0 058 c 5641 16744 ad b0 4138 e9 5a b0 02 1675269 b4 8d b0 41 a5 0109 1676001850160 a9 008 d b1 16768418 d b2 41 a2 ff fø 24 16776 a0 01 ๆ 0038 b1 4118 1678469 ff 900918 ee b1 41 16792 d $\emptyset 0$ ee b2 41 ca d \emptyset f \emptyset 168002980 f0 08 ee b1 41 d 0 16808 Ø3 ее b2 4160000000 168160000000000000000 $16824000000 \emptyset 000000000$ 168320000000000000000 $1684000000000 \emptyset 000000$ 16848 a5 0129 fe 8501 ee 1a 1685643206742 ce 1a 43 ad $168641843 \mathrm{~d} \emptyset 03$ се 1943 ce 168721843206742 ee 1843 16880 d0 03 ee 1943 ce 1a 43 16888206742 ee 1a 43 ee 18 1689643 d 003 ee 19432067 1690442 ad 1843 d 003 ce 19 1691243 ce 1843 ad 1943 8d 16920 e1 cf ad 18438 d e ef 16928 ad 1a $438 d$ e2 cf 2058 16936 c3 20 3c 42 ad 1a 43 c 9 16944 ff d 0 a3 a5 $\emptyset 1$ Ø9 Ø1 85

16952014 c ae a7 ae 1 b 43 ca 16960 e $\emptyset \emptyset 0 d \emptyset \emptyset d$ ad 1c 43 c 9 16968 Ø1 d 0 Ø6 a9 Ø0 8d 1c 43 16976 ca bd $\emptyset 0$ bd $8 d 1843$ bd $16984 \emptyset 0$ be 8d 1943 bd $\emptyset 0$ bf 16992 8d 1a 438 8e 1b 4360 a9 17000102 c 16 d 0 † 010 a9 $\emptyset \varnothing$ 170088 d e1 cf ad 18438 d e \emptyset 17016 cf c9 a 090 1a 60 ad 19 17024438 d e1 cf f $\emptyset 0 \mathrm{~b}$ ad 18 $17032438 \mathrm{de0}$ cf c9 409007 1704060 ad 18438 d e 0 cf ad $17 \emptyset 48$ 1a $438 \mathrm{~d} \mathrm{e2} \mathrm{cf} \mathrm{c9} \mathrm{c8} 90$ $17056 \emptyset 1602088$ cc 2502 f \emptyset 170640160 a9 088 8d 1d 43 ae 17072 1b 43 ad 184348 ac 1a 1708043 c8 ca f 0 3d ce 1d 43 $17 \emptyset 88$ f $\emptyset 389838$ fd $\emptyset 0$ bf $\ddagger \emptyset$ $17096 \emptyset 6$ c9 029013 d 0 eb 68 1710448 dd $\emptyset 0$ bd d 0 e 4 ad 19 $1711243 \mathrm{fd} \emptyset 0$ be d $\emptyset \mathrm{dc}$ f 02 171206848 fd $\emptyset 0$ bd $\ddagger \emptyset$ ef b \emptyset 17128 Ø6 c9 fe 90 cd b \emptyset e7c9 17136 fe d \emptyset c 7 bd $\emptyset 0$ be d $\emptyset 1 \emptyset$ 17144 f0 c0 ae 1b 43 e8 d0 04 17152 e 88 e 1c 438 e 1b 43 ca 1716068 9d $\emptyset 0$ bd ad 1943 9d $17168 \emptyset \emptyset$ be $88989 \mathrm{~d} \emptyset 0$ bf $6 \emptyset$ $17176 \emptyset 00000 \emptyset 000 \emptyset 0 \emptyset 000$ $1718400000000 \emptyset 0000000$

SAVE ROUTINE

setlfs $=\$$ ffba setnam $=$ \$ffbd save $=$ \$ffd 8 clrchn $=\$ \mathrm{ffcc}$ ${ }^{*}=52901$
[N.B.: Programmers ref. guide p. 294 is wrong.]

tpsave Idx \#1
 !device
 bne saveme

* $=52908$
dksave Idx \#8
saveme Ida \#1

Idy	\#1
	setlfs
Ida	\$01
and	\#\%11111110
sta	\$01
Ida	
	\# endofn - hiresn
ldx	\# < hiresn
Idy	\# > hiresn
jsr	setnam
Ida	$\#<$ sincos
sta	frekzp
Ida	\# > sincos
sta	frekzp+1

jsr setlfs
Ida \$01
and \#\%11111110
sta \$01
Ida
\# endofn - hiresn
Idx \# < hiresn
Idy \# > hiresn
jsr setnam
Ida \# < sincos
sta frekzp
sta frekzp +1

Idx	\# < exitpl
Idy	\# > exitpl
Ida	\# frekzp
jsr	save
Ida	$\$ 01$
ora	\#\% $0000 \emptyset \emptyset 0$
sta	$\$ 01$
jsr	clrchn
rts	

hiresn txt "hires"
endofn $=$ *

PREFACE

! input hires basic
! standard
Preface definitions
!Part 1 -
addresses of modules
welcom $=\$ \mathrm{cb} 2 \emptyset$
modul $1=\$ c \emptyset \emptyset \emptyset$
colour $=\$ c 088$
hires $=\$ c 098$
multi $=\$ \mathrm{c} 110$
$\mathrm{nrm}=\$ \mathrm{c} 188$
lowcol $=\$ \mathrm{c} 160$
hicol $=$ \$c150
plot $=$ \$c338
line $=\$ c 47 \emptyset$
block $=\$ c 650$
paint $=$ \$ce80
test $=\$ c c 70$
cset $=\$ \mathrm{c} 200$
rec $=\$ \mathrm{ca3} \emptyset$
char $=\$ 6 \mathrm{~d} \emptyset$
text $=\$ c 7 b \emptyset$
$\operatorname{arc}=\$ c d 9 \emptyset$
ang $=$ \$cda 0
circle $=\$ c d 7 \emptyset$
draw $=\$ c 8 a \emptyset$
rot $=\$ \mathrm{cb} 9 \emptyset$ flash $=\$ c d 2 \emptyset$
off = \$cd60
!addresses of subsections
cgset1 $=\$ c 070$
cget $=\$ c 078$
cpixad $=\$$ c288
getxy1 = \$c2eØ
getxy $=$ \$c2e8
gptype $=\$ c 31 \emptyset$
bitmsk $=$ \$cfa0
plotex $=$ \$c358
lineex $=\$ c 498$
ctestp $=\$ c c 88$
$\operatorname{circ10}=\$ 4000$
pain2 $0=\$ 41 \mathrm{~d} \varnothing$!part 2 -
addresses of variables
somwer $=\$ 0002$
!work byte on
zero page
argho $=\$ 006 \mathrm{a}$
!fac \# 24 - byte
work area
frekzp $=\$$ ØØfb
!four bytes free core
holder $=$ \$cfe4
bscren $=\$$ a028
!... holds
backup of
low-res screen
!table used by
@draw, set by
@rot
!.. contains
unit vectors
in 4
directions
tbxpi $=$ \$cfc4
tbypix $=$ \$cfcc
tbxpar $=$ \$cfd4
tbypar $=$ \$cfd8
drsize $=$ \$cfdc
!tables used by
@circle/@arc/
@angl (3*18り
bytes)
sincos $=\$ b a 00$
!stack used by
@paint (3*256
bytes)
pstack $=\$$ bd $\emptyset \emptyset$.
!'there' is
(xthere,ythere)

- other end
of line in
@line
xthere $=\$ \mathrm{cfd} \emptyset$
xthrhi $=\$ c f d 1$
ythere $=\$$ cfd2
!used by 'plot'
routine ...
xplot $=$ \$cfeØ
xhigh $=\$ c f e 1$
yplot $=$ \$cfe2
ptype $=$ \$cfe3
usebit $=$ \$cfef
ink1 = \$cff1
ink2 $=$ \$cff \emptyset
ink3 $=$ \$cff2
ink12 $=$ \$cff3
inkx1 $=$ \$cff6
inkx2 = \$cff7
inkx3 = \$cff8
inkx12 $=$ \$cff9
exitpl $=$ \$cfff !how to leave @plot s/r
basic=Ø
linejb $=1$
$\mathrm{rtsjob}=2$
!part 3 -
addresses of
c64 rom routines
chrget $=\$ 0073$
ierror $=\$ 030 \emptyset$
infix $1=\$ b 79 b$
infix $=$ \$b79e
inposn $=$ \$aefd
xbasic $=\$$ a7ae
infacc $=$ \$ad8a
facfix $=\$ \mathrm{~b} 7 \mathrm{f7}$
fixlow $=\$ 0 \emptyset 14$
fixhi $=\$ 0015$
instrg $=\$ \mathrm{a} 9 \mathrm{~b} 1$
valtyp $=\$ 0 \emptyset \emptyset \mathrm{~d}$
intflg $=$ \$000e
vstrng $=\$ f f$
forpnt $=\$ 49$
!part 4a- other
c64 addresses
lobase $=\$ 040 \emptyset$
!base of
low-res screen
quartr $=250$
attr1 = lobase
!base of
attribute mem $a t t r 2=a t t r 1+$ quar tr
attr3 $=$ attr2 + quar $t r$
$\operatorname{attr} 4=\operatorname{attr} 3+$ quar tr
ch1bse $=\$ \mathrm{~d} 000$
!set1
character rom
ch2bse $=\$ \mathrm{~d} 800$
!set2
character rom
$\mathrm{vic}=\$ \mathrm{~d} \emptyset \emptyset \emptyset!\mathrm{vic}$ chip base
cmemry $=\$ \mathrm{~d} 800$
!colour ram memory
ciachp $=\$ \mathrm{dc} 0 \emptyset$
ciamsk $=$ ciachp $+\$ \emptyset$ d !masks interrupts (poke it)
iset $=\% 10000000$
!... with this
bit on it says
'set trap(s)'
iclear $=\emptyset$
!... with same
bit off it
says 'cancel
trap(s)'
timera $=\% 0 \emptyset 00 \emptyset 0 \emptyset 1$
ctimer $=$ ciachp $+\$ \emptyset$
e
timbit $=\% \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset 1$
hibase $=\$ 2 \emptyset \emptyset \emptyset$
!base of hires
screen
hitop $=\$ 4 \emptyset \emptyset \emptyset$!top
of hires
screen
!part 4b - vic
chip registers
and putative
contents
viccty $=$ vic $+\$ 11$
scrol3 $=\% 011$
row $25=8$
notblk $=16$
bitmod $=32$
ignore $=128$
vicctx $=$ vic $+\$ 16$
row40 $=8$
multic $=16$
unused $=\% 11000000$
vicmem $=$ vic $+\$ 18$
!low-res
screenpointer
in thousands
goes in the
top of it
lorfld $=\% 11110 \emptyset 0 \emptyset$
lorup $=>$ lobase
lorup4 $=$ lorup + lorup
+ lorup + lorup
lorptr $=<$ lorup4
ch1up $=>$ ch1bse
ch2up $=>$ ch2bse
ch1up4 $=$ ch1up + ch1up
+ ch1up + ch1up
ch2up4 $=$ ch2up + ch2up
+ ch2up + ch2up
ch1u16 $=<$ ch1up4 $+<$
ch1up4 $+<$ ch1up4
$+<$ ch1up4
ch2u16 $=<$ ch2up4 $+<$
ch2up4 + <ch2up4
$+<$ ch2up4
ch1u64 $=$ ch1u1 $6+$ ch
$1 u 16+c h 1 u 16+c h$
1416
ch2u64 $=$ ch2u16 + ch
$2 u 16+$ ch $2 u 16+c h$
$2 u 16$
ch1ptr $=>$ ch1u64
ch2ptr $=>$ ch2u64
!hires pointer
in thousands
goes in the
top of it
hiup $=>$ hibase
hiup4 $=$ hiup + hiup +
hiup + hiup
hiup16 $=<$ hiup4 +
$<$ hiup4
$+<$ hiup4 +
<hiup4
hiup64 $=$ hiup16 $=$ hi
up16 + hiup16 + hi
up16
hirptr $=>$ hiup64
onmem $=\%$ ØØØఏØØØ1
border $=$ vic $+\$ 2 \emptyset$
bkgrnd $=$ vic $+\$ 21$
!part 5 - things
worth naming
serror $=11$
!"syntax
error"
orange $=14$
!"out-of-range"
nybble $=\% 1111$
$y \max =200$
$x \max =320$
x cmax $=16 \emptyset$
!screen width
(multic)
rowlen $=4 \emptyset$
minus1 $=\% 11111111$
plus1 =1
MODULE 1
!tables
$\mathrm{Cr}=13$
int $=181$
* $=52992!=\$ c f \emptyset \emptyset$
keylst txt
"colour"
byt Cr
txt "hires"
byt Cr
txt "multi"
byt cr
txt "nrm"
byt cr
txt "lowcol"
byt Cr
txt "hicol"
byt Cr
txt "plot"
byt Cr
txt "line"
byt Cr
txt "block"
byt Cr
byt ' p,'a, int
byt Cr
$\begin{array}{ll}\text { txt } & \text { "t } \\ \text { byt } & \text { cr }\end{array}$
txt "cset"
byt cr,
txt "rec"
byt
txt "char"
byt Cr
txt "text"
byt Cr ,
txt "arc"
byt Cr
txt "ang|"
byt cr
txt "circle"
byt Cr
byt cr
txt "rot"
byt Cr
txt "flash"
byt Cr
txt "off"
byt cr
jumplst wor
colour
wor hires
wor multi
wor nrm
wor lowcol
wor hicol
wor plot
wor line
wor block
wor paint
wor test
wor cset
wor rec
wor char
wor text
wor arc
wor angl
wor circle
wor draw
wor rot
wor flash
wor off
keytot $={ }^{*}-$ jmplst
!program
txtbak $=$ frekzp
jmpptr $=$ frekzp
chragn $=\$ 0079$
txtptr $=\$ 0 \emptyset 7 \mathrm{a}$
igone $=\$ 0308$
ebasic $=\$ a 7 e 7$
* $=$ modul 1
sei
Ida \quad \#<examin
sta igone
Ida \quad \#> examin
sta
igone +1

cli rts	$\begin{aligned} & \text { cpx \#nybble +1 } \\ & \text { bcs cerror } \end{aligned}$	sta bscren $+\$ 30 \emptyset, x$	$\begin{array}{ll} \text { asl } & \text { a } \\ \text { asl } & \text { a } \end{array}$	$\begin{aligned} & \text { cmemry,x } \\ & \text { sta } \end{aligned}$	$\begin{aligned} & \text { cmemry }+\$ 1 \emptyset \emptyset, x \\ & \text { Ida } \end{aligned}$
examin jsr	rts		ast a	bscren + \＄4ØØ， x	bscren + \＄6ØØ，x
chrget	cerror Idx	bne hireØ5	as a		sta
cmp \＃＇＠	\＃orange	Ida somwer	ora inkx1	cmemry + \＄10Ø， x	cmemry + \＄200，x
beq examø2	jmp（ierror	Idy \＃\emptyset	sta inkx12		Ida
jmp ebasic	＝colour	copy1 sta	jmp xbasic	bscren + \＄5ØØ	bscren + \＄700，x
examØ2 jsr	jsr cget1	attr1，	${ }^{*}=\mathrm{nrm}$	Ida	sta
chrget	stx border	sta attr2，	jsr chrg	cmemry + \＄2Ø日， x	cmemry $+\$ 30 \emptyset, \mathrm{x}$
Idx txtptr	jsr cget	sta attr3，y	Ida		
stx txtbak	stx bkgrnd	sta	\＃lorptr＋ch1ptr	bscren + \＄600，x	bne cset24
1 ldx txtptr＋	jmp xbasic	attr4＋quartr－\＄	＋onmem	Ida	ldx \＃\emptyset
stx txtbak +1	scrptr $=$ frekzp +	10Ø，y	sta vicmem	cmemry + \＄ $30 \emptyset, \mathrm{x}$	cset28 Ida
Idy \＃$\# \square$	${ }^{*}=$ hires	iny	nrmø2 Ida	sta	bscren + \＄80日， x
ldx \＃\emptyset	jsr cget1	bne copy1	scrol3＋row 25	bscren + \＄700，x	sta attr1， x
examØ3 cmp	txa	Ida	＋notblk＋ignore	inx	Ida
keylst， x	ast a	\＃unused＋row40	sta viccty	bne nrm1 1	bscren + \＄900，x
bne examØ4	ast a	sta	Ida	jmp cset3Ø	sta
examØ7 inx	ast a	jmp multi5	unuse	cset	attr $1+\$ 10$
Ida \＃cr	ast a	＊$=$ multi	sta vicctx	jsr infix1	Ida
cmp keylst，	sta somwe	jsr	Ida \＄01	txa	bscren + \＄a＠Ø，x
beq exam10	jsr cget	stx in	and \＃\％11111110	cmp \＃\emptyset	sta
jsr chrget	txa	jsr cget	sta \＄01	beq csetØ	attr $1+$ 200，x
cmp keylst， x	ora somwe	stx ink2	$l \mathrm{dx}$ \＃${ }^{\text {a }}$	cmp \＃1	Ida
beq exam07	sta somwe	jsr cget	Ida attr1，	beq cset1	ascren + \＄bØØ，x
Ida txtbak	Ida \＃＞hibas	stx ink3	sta	cmp \＃2	sta
sta txtptr	sta scrptr＋ 1	Ida	scren + \＄80日，x	beq cset2	attr1＋\＄30Ø，x
Ida txtbak	Ida \＃＜hibase	unused＋multic	nrm04 Ida	$\begin{array}{ll}\text { ldx } & \text { serror } \\ \end{array}$	inx
sta txtptr＋1	sta scrpt	＋row40	attr $1+\$ 100$,	jmp（ierror）	bne cset28
exam＠4 Ida \＃cr cmp keylst，x	$\begin{aligned} & \text { zer256 Idy \# } \\ & \text { zer1 sta } \end{aligned}$	sta vicctx Ida ink2	sta $\text { bscren }+\$ 9 \emptyset \emptyset, x$	csetØ lda \＃lorptr + ch1ptr	cset 30 Ida $\% \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset ~$
beq exam05	（scrptr），	asl a	Ida	＋onmem	ora \＃\＄01
inx	iny	asl a	$a t t r 1+\$ 20 \emptyset$,	sta vicme	sta \＄01
bne examø4	cpy \＃\emptyset	asl a	sta	bne csetø1	zbasic jmp
exam05 inx	bne zer1	as	bscren + \＄aØØ， x	cset1 Ida	xbasic
iny	inc scrptr	ora i	Ida	orptr + ch2ptr	
iny	$\text { Idx scrptr }+1$	sta ink12	$\text { attr1 }+\$ 300,$	＋onmem	Module 4
jsr chragn cpy \＃key	$\begin{aligned} & \text { cpx \# > hitop } \\ & \text { bne zer256 } \end{aligned}$	$\begin{aligned} & \text { multi5 Ida \# \$ff } \\ & \text { sta inkx1 } \end{aligned}$	sta bscren + \＄bØ0，x	cset01 sta vicmem	Module 4
bne examØ3	Ida	sta inkx2	inx	Ida bitm	＝cpixad
exam99 Idx	\＃scrol3＋row25	sta inkx3	bne nrmø	bit viccty	scrnad $=$ frekzp +2
\＃serror	notblk＋bitmod	sta inkx12	1 dx \＃\＃\emptyset	beq zbasic	zxchar $=$ frekzp
jmp（ierror）	sta viccty	Ida somwer	nrm07 Ida	jmp nrmØ2	zychar $=$ frekzp +1
exam10 Ida	Ida vicmem	sta bkgrnd	bscren，	cset2 Ida	Ida \＃multic
jmplst，y	and \＃lorfld	multi9 jmp	sta lobase，	\＃scrol3＋row 25	bit vicctx
sta jmpptr	ora \＃hirptr	xbasic	Ida	＋notblk＋bitmod	beq phires
Ida jmplst	sta vicmem	${ }^{*}=$ hic	bscren + \＄100，x	sta viccty	asl xplot
sta jmpptr +1	Idx \＃	jsr chrget	sta	Ida vicmem	rol xhigh
．jmp（jmpptr）	hire05 Ida	jmp multi5	lobase + \＄10Ø， x	and \＃lorfld	ypixpo $=$ scrnad
	base		Ida	ora \＃hirp	phires Ida xplot
MODULE 2	sta bscren， Ida	MODULE 3	bscren + \＄20日，x	sta vicme	and
MODULE 2	Ida $\text { lobase }+\$ 100, x$	MIODULE 3	$\begin{aligned} & \text { sta } \\ & \quad \text { lobase }+\$ 2 \emptyset \emptyset \end{aligned}$	$\begin{array}{ll} \text { Ida } & \$ 01 \\ \text { and } & \# \% 1111110 \end{array}$	eor \＃\％11 sta usebit
＊$=$ cget1	sta	＊$=$ lowcol	Ida	sta \＄01	Ida yplot
jsr infix1	bscren + \＄10Ø， x	jsr cget1	bscren + \＄30日， x	$l d x \quad \# \emptyset$	and \＃\％111
cpx \＃nybble＋ 1	Ida	stx inkx1	sta	cset24 Ida	ast a
bcs cerror	lobase + \＄200，x	jsr cget	base + \＄30Ø，x	bscren $+\$ 400, \mathrm{x}$	asl a
rts	sta	stx inkx2	inx	sta cmemry， x	sta ypixpo
＝cget	bscren + \＄2Ø日， x	jsr cget	bne nrm07	Ida	plot10 Ida xhigh
jsr inposn	Ida	stx inkx3	ldx \＃\emptyset	bscren + \＄50Ø， x	Isr a
jsr infix	lobase $+\$ 30 \emptyset, \mathrm{x}$	Ida inkx2	nrm10 Ida	sta	Ida xplot

ror a	bcc gptyø2	pmulti Ida	Ida ink3	ydishi $=$ \$0346	Sec
Isr a	perror pla	ebit	sta (scrnad),y	${ }^{*}=$ line	sbc xthere
Isr a	pla	Isr a	bpl plot78	Ida \# linejb	sta
sta zxchar	Idx orange	sta usebit	plot64 nop	sta exitpl	Ida xhigh
Ida yplot	jmp (ierror)	Ida ptyp	Ida inkx	jsr getx	sbc xthrhi
lsr a	gptyø2 stx ptype	cmp \#	sta (scrnad)	Ida fixlow	sta xdishi
Isr a	rts	bne plot32	clc	sta xplot	line16 Ida ydiag
Isr a	${ }^{*}=$ plot	jsr pØmlti	Ida \quad scrnad +1	Ida fixhi	cmp \#minus1
sta zychar	Ida \#basic	jmp plot50	adc	sta xhigh	beq line18
Isr a	sta exitpl	plot32 cmp \# 4	$r y->$	stx yplot	Ida ydiff
ror scrnad	jsr getxy	bne plot3	att	jsr getxy	sta ydist
Isr a	Ida fixlow	Idy \# \emptyset	sta scrnad +1	Ida fixlow	Ida \# \emptyset
ror scrnad	sta xplot	Idx usebit	Ida inkx3	sta xther	sta ydishi
clc	Ida fixhi	Ida (scrnad),	sta (scrnad), y	Ida fixhi	jmp line20
adc zychar	sta xhigh	eor allmul, x	plot78 Ida	sta xthrh	line18 Ida yplot
adc \# > hibase	stx yplot	sta (scrnad),y	exitpl	stx yther	sec
sta scrnad +	jsr gptyp	jmp plot50	beq plot8	jsr gptype	sbs ythere
Ida zxchar	jmp plotex	plot34 cmp \# 1	rts	Ida xthere	sta ydist
asl a	= plotex	bne plot36	plot80 j	sec	Ida \#
asl a	jsr cpixa	jsr pØmlti	basi	sbc xplot	sta ydishi
asl a	Ida yplot	ora onmul1,x	pØmiti ldy \# Ø	sta xdiff	line20 Ida xdist
bcc plot18	cmp \#ymax + 1	sta (scrnad), y	Idx useb	Ida xthrh	sec
inc scrnad +	bcc plotø4	jmp plot50	Ida (scrnad), y	sbc xhigh	sbc ydist
clc	jmp plot78	plot36 cmp \#2	and offmul,x	sta xdiffh	Ida xdishi
plot18 adc	plot04 Ida xhigh	bne plot3	sta (scrnad),	bcs lineØ	sbc ydishi
scrnad	bmi	jsr pOmli	rts	Ida \#minus1	bcs line22
sta scr	cmp \# > max	ora onmul2,x	= bitms	sta xdiag	Ida \#
bcc plot2Ø	bcc plot08	sta (scrnad), y	byt	sta xdiagh	sta xpara
inc scrnad +	bne plot06	jmp plot50	$\$ 01, \$ 02, \$ 04, \$ 08,$	jmp lineØ8	sta xparah
plot20 rts	Ida xplot	plot38 jsr	\$10,\$20,\$40,	lineØ6 Ida	Ida ydiag
* $=$ getxy1	cmp \# <xmax	Oml	\$80	\# < plus 1	sta ypara
jsr chrget	bcc plot $\emptyset 8$	ora onmul3, x	offmsk byt	sta xdiag	Ida xdist
jmp gexy01	plot06 jmp	sta (scrnad), y	\$fe,\$fd,\$fb,\$f	Ida \# > plus1	ldx ydist
* $=$ getxy	plot7	plot50 Ida	ef,\$df,\$b	sta xdiagh	sta ydist
jsr inposn	plot08 Ida	rna	\$7f	lineØ8 Ida	stx xdist
gexy01 jsr	\# multic	eor \# > hibas	offmul	yther	da xdishi
infacc	bit vi	sta scrnad +1	\$fc,\$f3,\$cf,\$	sec	Idx ydishi
jsr facfix	bne pmult	lsr scrnad+1	allmul byt	sbc yplot	stx xdishi
Ida fixhi	Ida ptype	ror scrna	\$03,\$0c,\$30,\$cØ	sta ydif	sta ydishi
bmi perror	cmp \# \emptyset	lsr scrnad + 1	onmul1 byt	bcs line10	bigdis $=\$ 0343$
cmp \# > xmax	bne plot2	ror scrna	\$02,\$08,\$20,\$80	Ida \#minus1	bigdhi $=$ \$0344
bcc gexyø2	Idy \# \quad	Isr scrnad +	onmul2 byt	sta ydiag	tinyd $=$ \$0345
bne perror	1 dx usebi	ror scrnad	\$01,\$04,\$10,\$40	jmp line12	tinyhi $=\$ 0346$
Ida fixlow	Ida (scrnad), y	Ida \# > attr1	onmul3 byt	line10 lda	dodiag $=\$ 0347$
cmp \# <xmax	and offmsk, x	eor scrnad +1	\$03,\$Øc,\$30,\$cØ	\# plus1	dodihi $=$ \$0348
bcs perror	sta (scrnad), y	sta \quad scrnad +1		sta ydiag	stepct $=$ \$0349
gexy02 jsr	jmp plot50	Idy \# \emptyset		line12 Ida xdiag	$\text { stephi }=\$ 034 \mathrm{a}$
inposn	$\text { plot } 24 \mathrm{cmp} \# 2$	Ida inkx12	MODULE	sta xpara	xnow $=$ \$cfdØ
jsr infix	bne plot26	cmp \#		Ida xdiagh	xnowhi $=$ \$cfd1
cpx xymax +1	p2hres ldy \# 0	bne plot6	$=\$ 033$	sta xparah	ynow $=$ \$cfd2
bcs perror	Idx usebit	Ida \#multic	xdiffh $=$ \$033d	Ida \# \emptyset	line22 Ida
rts	Ida (scrnad), y	bit	ydiff $=$ \$033	sta ypara	bigdhi
= gptype	eor bitmsk, x	beq plot78	xdiag $=$ \$033f	Ida xdiag	ror a
jsr inposn	sta (scrnad), y	Ida ink12	xdiagh $=$ \$034b	cmp \#minus1	Ida bigdis
jsr infix	jmp plot50	sta (scrnad),	ydiag $=$ \$0340	beq line14	ror a
cpx \#3	plot26 Idy \# Ø	clc	xpara $=$ \$ 0341	Ida xdiff	sta dodiag
bcc gptyø2	Idx usebit	Ida \quad scrnad +1	xparah $=\$ 034 \mathrm{c}$	sta xdist	Ida \# \emptyset
Ida \#multic	Ida (scrnad), y	adc	ypara $=$ \$0342	Ida xdiffh	sta stepct
bit vicct	ora bitmsk,x	\# > cmemry - >	= \$0343	sta	sta stephi
beq perror	sta (scrnad), y	attr1	xdishi $=\$ 0344$	jmp line16	sta dodihi
cpx \#5	jmp plot50	sta scrnad +1	ydist $=\$ 0345$	line14 Ida xplot	Ida xplot

sta xnow Ida xhigh sta xnowhi Ida yplot sta ynow	cmp bigdhi bcs line32 jmp line26 line32 Ida stepct	xlfthi byt \emptyset ytop byt \emptyset xrgtlo byt \emptyset xrgthi byt \emptyset ybottm byt \emptyset	bne char20 Ida $\$ 01$ ora $\# \% 00000100$ sta $\$ 01$ inc ctimer	height byt \emptyset pokeco byt \emptyset pattrn $=\$ 02 \mathrm{a} 7$! 89 byte work area	```cmp #ctrlb beq text18 jmp text9\emptyset text14 Ida #%10000000```
line26 Ida xnow	cmp bigdis	ynow byt \emptyset	ldx \# \emptyset	ctrla $=\$ 01$	sta revflg
sta xplot	bcs line34		char22 stx	ctrlb $=\$ 02$	jmp text90
Ida xnowhi	jmp line26		rowent	rvson $=\$ 12$	text16 Ida \# \emptyset
sta xhigh	line34 Ida	MODULE 7	Ida pattrn, x	rvsoff $=\$ 92$	sta revflg
Ida ynow	exitpl		jsr char3Ø	${ }^{*}=$ text	jmp text90
sta yplot	cmp \# linejb	* $=$ char	Idx rowent	Ida \# linejb	text17 Ida
jsr plotex	bne line36	$\operatorname{csize}=8$	inx	sta exitpl	\# > chibse
Ida dodiag	jmp xbasic	Ida \# linejb	cpx \# csize	jsr getxy1	sta char $11+1$
clc	line36 rts	sta exitpl	bne char22	Ida fixlow	jmp text90
adc tinyd		jsr getxy1	char24 rts	sta xchrlo	text18 Ida
sta dodiag	MODULE 6	Ida fixlow	char30 sta	Ida fixhi	\# > ch2bse
Ida dodihi	MVODULE	sta xchrlo	rpatrn	sta xcharh	sta char11+1
adc tinyhi		Ida fixhi	ldx height	stx ytext	jmp text90
sta dodihi	= block	sta xcharh	stx thisct	Ida \# vstrng	text20 and
Ida dodiag	Ida \#rtsjob	stx ychar	char32 lda	sta valtyp	
sec	sta exitpl	jsr inposn	xchrlo	sta intflg	Isr a
abc bigdis	jsr getxy1	jsr infix	sta xnowlo	Ida \# < argho	sta shift
Ida dodihi	Ida fixlow	stx pokeco	sta xplot	Idx \# > argho	Ida txbyte
sbc bigdhi	sta xlftlo	jsr gptype	Ida xcharh	sta forpnt	and \#\%00111111
bcc line28	Ida fixhi	jsr cget	sta xnowhi	stx forpnt+1	ora shift
Ida dodiag	sta xlfthi	txa	sta xhigh	stx txtptr	ora revflg
sec	stx ytop	beq char08	Idy \#csize	jsr inposn	sta pokeco
sbc bigdis	jsr getxy	sta height	char34 sty	jsr instrg	stx txtptr
sta dodiag	Ida fixlow	jsr char10	bitcnt	Ida argho	Ida ytext
Ida dodihi	sta xrgtlo	charØ8 jmp	Ida ychar	sta txtlen	sta ychar
sbc bigdhi	Ida fix	xbasic	sta yplot	Ida argho +1	jsr char10
sta dodihi	sta xrgthi	char10 Ida	Ida rpatrn	sta text $12+1$	Ida xchrlo
Ida xnow	stx ybottm	pokeco	and bitmsk-1,y	Ida argho +2	clc
clc	jsr gptype	ast a	beq char36	sta text $12+2$	adc txtwid
adc xdiag	Ida ybottm	asl a	jsr plotex	jsr gptype	sta xcharlo
sta xnow	sec	ast a	char36 Ida	jsr cget	Ida xcharh
Ida xnowhi	sbc ytop	sta char $20+1$	xnowlo	txa	adc \# \emptyset
adc xdiagh	beq blok99	Ida pokeco	clc	beq textø9	sta xcharh
	bcc blok99	lsr a	adc \#1	sta height	text90 ldx
Ida ynow	. Ida ytop	a	sta xnowlo	jsr cget	txtptr
adc vdiag	sta ynow	Isr a	sta xplot	stx txtwid	inx
adc ydiag	block20 Ida	Isr a	Ida xnowhi	jmp text10	cpx txtlen
$\begin{array}{ll}\text { sta } & \text { ynow } \\ \text { jimp } & \text { line } 30\end{array}$	xlftlo	Isr a	adc \# \emptyset	text09 jsr infix	beq text92
jmp line30	sta xpla	char11 ora	sta xnowhi	jmp xbasic	stx txtptr
ine28 lda xnow clc	Ida xt	\# >ch1bse	sta xhigh	text10 ldx	jmp text11
clc adc xpara	sta xhigh	sta char2 $0+2$	Idy bitent	xtlen	text92 Ida
$\begin{array}{ll}\text { adc } & \text { xpara } \\ \text { sta } & \text { xnow }\end{array}$	Ida xrgtlo	char14 Idx \# \emptyset	dey	bne text11	\# > ch1 bse
sta xnow Ida xnowhi	sta xthere	start at byte \emptyset	bne char34	jmp text95	sta char $11+1$
Ida xnowhi adc xparah	Ida xrgthi	Ida ctimer	inc ychar	text11 Idx	text95 jmp
adc xparah sta xnowhi	sta xthrhi	and $\# \% 1111111$	dec thisct	txtptr	xbasic
sta xnowh Ida ynow	lda ynow	\#\%11111111 -	bne char32	text12 Ida	ytext byt \square
clc	sta yplot	sta	char39 rts thisct byt \emptyset	\$ffff,	txtwid byt \emptyset
adc ypara	cmp ybottm	Ida \$01	rpatrn byt \emptyset	cmp \#rvson	txtptr byt \emptyset
sta ynow	beq blok99	and \#\%11111011	rowent byt \emptyset	beq text14	txtlen byt \emptyset
line3Ø inc	inc ynow	sta \$01	bitent byt \emptyset	cmp \#rvsoff	txbyte byt \emptyset
stepct	jsr linex	char20 lda	xchrlo byt \emptyset	beq text16	shift byt \emptyset
bne line31	jmp blok2Ø	\$ffff, x	xcharh byt \emptyset	cmp $\#^{\prime}+\emptyset$	
inc stephi	blok99 jmp	sta pattrn, x	xnowlo byt \emptyset	bcs text20	
line31 Ida stephi	xbasic xlftlo byt θ	inx	xnowhi byt \emptyset	cmp \#ctrla	MODULE 8

sta xpart	draw62 dec todo	jmp (ierror)	prtstr $=$ \$ab1e
Ida drxlow	beq draw64	rect10 Ida xleft	num $=$ \$bdcd
adc x1pix\|	jmp draw21	sta	$\mathrm{fr}=$ \$e460
jsr switox	draw64 inc	Ida	itio $=$ \$e518
adc x 1 pixl +1	bytsd	sta xhig	hrout $=$ \$ffd2
sta drxhi	jmp draw20	Ida ytop	fretop $=$ \$33
Ida ypart	jsrop $=$ \$20	sta yplot	memsiz $=\$ 37$
clc	switox php	sta ythere	vartab $=$ \$2d
adc y1	cmp drxlow	Ida xright	blue $=6$
ta yp	beq swix99	sta xthere	grey3 $=15$
drawy	pha	Ida xrthi	bluprt $=31$
adc y1pix\|	Ida \# jsrop	sta xthrhi	rvson $=18$
jmp draw59	sta draw61	jsr lineex	* $=$ welcom
draw52 Ida xpart	pla	Ida xright	Ida \# <topbsc
clc	sta drxlow	sta xplot	sta fretop
adc x2part	swix99 Ida drx	sta xthere	sta memsiz
sta xpart	plp	Ida xrth	Ida \# > topbsc
Ida drxlow	rts	sta xhigh	sta fretop +1
adc x2pixl	end	sta xthrthi	sta memsiz + 1
jsr switox		Ida ybott	jsr initio
adc $\quad x 2$ pixl +1		sta ythere	Ida \#blue
sta drxhi	MODULE	Ida ytop	sta border
Ida ypart		sta yplot	Ida \#grey3
clc	$=\mathrm{rec}$	jsr lineex	sta bkgrnd
adc y2part	Ida \#rtsjob	Ida ybottm	$l d x \quad \# \emptyset$
sta ypart	sta exitpl	sta yplot	
Ida drawy	jsr getxy	sta ythere	init02 Ida
adc y2pix\|	Ida fixlow	Ida xleft	nit⿹勹, x
jmp draw59	sta xleft	sta xther	jsr chrout
draw53 Ida xpart	Ida fixhi	Ida xlfthi	inx
clc	sta xlfth	sta xthrhi	cpx
adc x3part	stx ytop	Ida xright	\# initØ6-initØ4
sta xpart	jsr getxy	sta xplot	bne initØ2
Ida drxlow	Ida fixlow	Ida xrthi	Ida memsiz
adc x3pixl	sta width	sta xhigh	sec
jsr switox	Ida fixhi	jsr lineex	sbc vartab
adc $x 3$ pixl +1	sta widh	Ida ytop	tax
sta drxhi	stx rhigh	sta yther	Ida memsiz +1
Ida ypart	jsr gptype	Ida ybottm	sbc vartab +1
clc	Ida xleft	sta yplot	jsr prtnum
adc y3part	clc	Ida	Ida \# < bytefr
sta ypart	adc wid	sta	Idy \# > bytefr
Ida drawy	sta xright	sta xther	jsr prtstr
adc y3pix	Ida xlfthi	Ida xlfthi	jmp modul1
draw59 cmp drawy	adc widhi	sta xhigh	init04 byt
beq draw60	sta xrthi	sta xthrhi	bluprt
sta drawy	cmp \# > xma	jsr lineex	byt ruson
Ida \#jsrop	bmi rect04	jmp xbasic	txt "input
sta draw61	bne rectø9	xleft $=$ holder	hires graphics"
draw6Ø Ida	Ida xright	xlfthi $=$ holder +1	txt " "
drcode	cmp \# <xmax	ytop $=$ holder +2	init06 $=$ *
cmp \#'4	bpl rectø9	width $=$ holder +3	rotang $=$ exitpl
bmi draw62	rect04 Ida ytop	widhi $=$ holder +4	angmax $=7$
Ida drxlow	clc	rhight $=$ holder +5	${ }^{*}=\mathrm{rot}$
sta xplot	adc rhight	xright $=$ holder +6	jsr infix1
Ida drxhi	sta ybottm	$\mathrm{xrthi}=$ holder +7	cpx \# angmax
sta xhigh	bcs rectø9	ybottm $=$ holder +8	bpl rotn09
Ida drawy	cmp \#ymax + 1		stx rotang
sta yplot	bcc rect10	MODULE 10	txa
stx $\begin{gathered}\text { bytsdn } \\ \text { draw61 jsr plotex }\end{gathered}$	rect09 ldx \# serror	$\text { topbsc }=\text { hibase }-1$	asl tax

circ57	tay	pindex Idy \# \$05	* $=$ paint	cmp \#1	sbc
Ida anglhi	Ida prodhi	pla	Ida \# linejb	bne off2	pstack + \$2Ø日, x
bne circ26	adc x	sta ytabl,	ta exitpl	Ida \# \quad O	beq xspot
Ida angle	beq circ39	xcoord Ida \# \$		sta oflag	cmp \#2
cmp \#90	cmp \#>xmax +1	sta xtabl,	stx stack	dex	bcc xnear
bcs circ22	bcs circ44	dey	ldx \# dummy	off2 Ida	bne ontol
Idx \# sinpve	cpy \# <xmax	bpl circ58	pstack $+\$ 2 \emptyset 0$	pstack,x	xspot pla
Idy \#cospve	bcc	Idy \#5	getxy1	sta xpin	pha
bne circ28	jmp circ80	circ58 sty	Ida fixlow	Ida	cmp pstack
circ22 cmp \# 180	circ35 Ida	$\text { pindex }+1$	sta	pstack + \$10Ø,x	bne ontol
bcs	xther	circ80 lda ang	Ida	sta xpinhi	onto5 Ida xpinh
Ida \# <270	sec	sec	xpinh	Ida	sbc
clc	sbc prodl	sbc \#90	pin	pstack + \$200,x	+\$100,
sbc angle	tay	bcs circ82	gptype	sta ypin	bne ontol
sta angle	Ida xthrhi	adc \#180	mp pain2	stx stack	beq onto2Ø
Idx \# sinpve	sbc prodh	circ82 sta angle	pain2Ø	rts	xnear pla
Idy \# cosneg	bcc circ80	Ida \$01	Ida \$01	probe Ida	ar
beq circ28	circ39 sta xhigh	ora \#\%00000001	and \#\%11111110	\# multic	sbc pstac
24 ldx	sty x	sta \$01	sta \$01	bit vicc	beq onto5
\# sinneg	circ40 lda	ts	pain22 inc ypin	beq probe2	bcs onto6
Ida angle	clc	mulply Ida \# \emptyset	jsr probe	Ida \# \emptyset	cmp \#\%11111110
sec	sbc an	sta	ypin	sta xhigh	bcc onto1
sbc \#180	tax	sta prodh	xpin	Ida	bcs onto5
sta angle	circ42	mpier Idx	pain25	sta xplo	onto6 cmp
Idy \# cosneg	\$ff00,	-	dec xpinhi	cmp \#xcmax	\#\%11111110
beq circ28	sta	beq mulp	pain25 dec xpi	bcc probes	bne onto1
cir26 Ida angle	Ida yrad	mcanhi ldy \#\%1	obe		da
sec	$\text { sta mcand }+1$	beq mcanø2	inc xpin	probe2 Ida	$\text { pstack }+\$ 1 \emptyset 0, x$
$\text { sbc } \#<27 \emptyset$	$\text { Ida } \# \emptyset$	stx prodlo	bne pain27	xpinhi	bne onto2 0
bmi circ24	sta	mcanø2 clc	xpinh	sta xhigh	beq onto1
sta angle	jsr mulply	mcand adc \# \$	pain27 dec ypi	beq probe4	onto9 Idx stack
Ida \#180	cosine Ida \#\$ff	bcc mcan0	isr probe	Ida xpin	inx
clc	bne circ45		ypin	sta xplot	bne onto12
		c prodlo	in	mp \# <xmax	inx
sta angle		bne mcanØ	ain2	cce probe6	stx oflag
	adc	inc prod	inc xpinh	probe4 Ida xpin	onto12 stx stack
$\begin{aligned} & \text { ldy \# } \\ & \operatorname{circ28~stx} \end{aligned}$	cmp \#ymax	mcan04 bne	pai	probe4 lda xp sta xplot	$\begin{gathered} \text { dex } \\ \text { onto } 20 \end{gathered}$
sine +	circ44 bcs		bne pain3	probe6 Ida ypin	sta pstack,x
sty cosine	circ8	beq mulp99	dec xpinhi	sta yplot	Ida xpinhi
Ida \# > sincos	bcc circ49	inc prodlo	pain31 dec xpi	cmp \#ymax	sta
$\begin{aligned} & \operatorname{circ} 3 \emptyset \text { sta } \\ & \quad \operatorname{circ} 32+2 \end{aligned}$	circ45 Ida ythere	bne mulp99 inc prodhi	Ida xpinhi	bcc probe8	$\text { pstack }+\$ 10 \emptyset, x$
sta $\operatorname{circ} 42+2$	sec	mulp99 rts	xpin	probe8	tya
circ31 Idx angle	sbc prodlo	xrad byt \emptyset	sta xplot	ctestp	sta
Ida \$01	bcc circ80	xradhi byt \emptyset	da ypin	Ida somwer	pstack + \$20日, x
and \#\%11111110	circ49 sta yplot	yrad byt \emptyset	lot	beq onto	rts
sta \$01	pha	angle byt \emptyset	jsr plotex	rts	xpin byt \emptyset
circ32 Ida	Idy xplot	prodlo byt \emptyset	jsr soff	onto Ida \#8	xpinhi byt \emptyset
\$ff00,x	sty xcoord +1	prodhi byt \emptyset	ypin	ount	ypin byt \emptyset
sta mpier + 1	Idx \#5	angl1 byt \emptyset	cmp \#dumm	ldx stack	stack byt \emptyset
Ida xrad	circ54 pla	anglhi byt \emptyset	bne pain22	Ida xpin	oflag byt Ø
sta moand+1	pha	ytabl byt	pain99 Ida \$01	pha	scount byt \emptyset
Ida xr	cmp ytabl, x	Ø,Ø,Ø,Ø,Ø,Ø		Idy ypin	end
sta m	bne circ56	xtabl byt	01	iny	
jsr mulply	tya	Ø,Ø,Ø,Ø,	jmp xbasic	onto1 de	
sine Ida \# \$ff	cmp	end	soff Idx stack	beq onto	
bne circ35	beq		dex	dec scount	
Ida prodlo	circ56 dex	M	$\operatorname{cpx} \# \emptyset$	beq onto9	
clc	bpl circ54	M	bne off2	tya	
adc xthere	circ57 jsr plotex	dummy $=$ minus1	Ida oflag	sec	

DISK-EDITING UTIILITIIES

For disk drive users, here is a utility that gives you direct access to stored information, enabling you to amend it, or retrieve it in case of accidents.

\mathbf{n}	DIRECT ACCESS
\mathbf{n}	READING AND WRITING
	DISK LAYOUT
	THE DIRECTORY

	USING THE PROGRAM
READING A SECTOR	
	EDITING THE DISK
R	REINSTATING A DELETED FILE
R	

The business of writing and reading files on a disk is handled by the disk operating system (DOS) or disk filing system (DFS) used by your computer. Normally you simply do not have to concern yourself with the organization of information on a disk or the transfer of data to and from it-the DOS/DFS takes care of everything. The disks and the disk unit simply become an extension to the computer-a data storage device.

But DOSs/DFSs do offer you the possibility of accessing individual parts of the disk so that information can be extracted, manipulated or amended beyond a parent programa very useful capability which opens up a number of interesting and important possibilities.

You can use this form of direct access to change directory entries, file names, file data, file links, or to salvage information. The last of these is perhaps the most useful of all. Direct access enables you-amongst other things-to 'unscratch' files which have been deleted or scratched, CLOSE unclosed files, or re-establish sector pointers which have been corrupted, so restoring the correct 'chaining' of sectors which go to make up a particular file. There are several other uses which make a disk monitor program a useful utility to have.

Direct access of individual information 'blocks' on a disk can be likened to the use of a monitor to examine and alter selected parts of memory. And, in fact, the program that follows looks very much like such a monitor when in use. Unfortunately, it is not possible to access sectors on a Microdrive tape using a BASIC program, so there is no Spectrum disk monitor program.

The essence of the disk monitor's (or disk editor's) operation is a buffer which provides temporary storage for data read from a disk or written to it. While in the buffer, the information can be amended as desired and this new information used to overwrite old on the disk.

DISK GEOGRAPHY

Some knowledge of the layout of data on the disk is essential if specific tracks and sectors are to be located. This layout is normally referred to as a disk's format and is established by the formatting routines of the DOS/DFS
used by your computer.
Hex notation is used extensively in all references dealing with direct access work, and that's why the general descriptions that follow do so as well. And note that decimal notation must not be used in connection with the use of DMON and other programs of this type. So you will find a good set of hexdecimal and hex-ASCII conversion tables useful.

HANDS ON

You need a map of the disk format before you can use the disk monitor and this is given under each machine's section. But first a couple of points. If you are working on a disk containing important information, make a backup first! Then any mistakes will not be catastrophic.
Secondly, it may sound obvious but you cannot recover information which is not there. If, for example, you want to recover a 'lost' or 'scratched' file you can do so only if the data hasn't already been overwritten. When a file is scratched, the storage space once used by that file is released for future use and could well have been corrupted if further file writing has taken place in the interim.
It may, however, be possible to salvage some data by directing the file pointers to those sections that have not already been overwritten.

C

The 1541 is the dedicated disk unit for the Commodore 64 (and Vic 20). It has its own on-board disk operating system and can thus be considered a fairly 'intelligent' device in its own right. While the disk monitor can be adapted for use on other CBM drives, the track and sector information which follows applies specifically to this unit.

1541 disks are divided into 35 tracks, each containing from between 17 and 21 sectors depending on the track's physical location. In all, a total of 683 sectors exist of which a maximum of 664 are available for use. Each sector has 256 bytes of storage space.
Track 18 is occupied by what is called a directory. This is normally accessed simply by typing LOAD" $\$$ ", 8 followed by LIST-this
displays the program, sequential and other types of file present on the disk. Up to 144 directory entries (hence files) may be contained on the one disk.

Track 18 is the most common one to access indirectly using a disk monitor, typically to correct the various directory corruptions or mistakes that can take place. A typical 'file saver' is unscratching files accidentally discarded, and re-establishing pointers to avoid corrupted areas of the disk which are unsalvageable.

But, of course, to find your way round you need a 'map' or format of how and where information is located on the disk. Let's look first at track 18 , the directory.

First there's what's called the block availability map (BAM), the purpose of which is to indicate just what sector blocks are free for use. The BAM is updated after every disk access.

The general layout of the BAM and directory track is:

TRACK 18 (\$12) SECTOR \emptyset

Byte
Purpose
$\$ \emptyset 0-\$ 01$ Track and sector of the first block of the directory
$\$ \emptyset 2$ Has value $\$ 41$ (ASCII character A to indicate 1541 format)
$\$ \emptyset 3$ Zero flag (not important)
\$ $04-\$ 8 \mathrm{~F} \quad$ Bit map of free blocks (marked 1) and allocated blocks (marked Ø)
\$90-\$FF DIRECTORY HEADER
Header format:
$\$ 9 \emptyset-\$ A 1$ Disk title (padded with shifted spaces - \$A \emptyset)
\$A2-\$A3 ID marker
\$A4 Spacer (shifted space - \$A ${ }^{\text {4 }}$)
\$A5-\$A6 Format type (\$32,\$41-2A in ASCII)
\$A7-\$AA Spacers (shifted spaces - \$A \emptyset)
\$AB-\$FF Unused (\$ØØ) except for BLOCKS FREE legend

The actual directory starts in track 18 sector 1 and, depending on the number of files, may extend to other sectors as well. All of the remainder of track 18 is set aside for this task. A maximum of eight files can be detailed in each sector.

TRACK 18 (\$12) SECTOR 1

Byte Purpose
$\$ \emptyset 0-\$ \emptyset 1$ Track and sector of next directory block
\$ $02-\$ 1 \mathrm{~F}$ DETAILS OF FIRST FILE:
File format:
$\$ \emptyset 2$ File type (see below)
\$ $\mathbf{\$ 3}$-\$ 04 Track and sector of first file data block
\$Ø5-\$14 Name of first file (padded with shifted spaces $-\$ A \emptyset$)
\$15-\$16 Used for relative files only (T\&S of first side-sector block)
\$17 Relative file record length
\$18-\$1B Not used
\$1C-\$1D Used for T\&S of new file when 'save and replace' instruction-@-used
\$1E-\$1F Number of blocks in the first file (lo-byte, hi-byte)
\$20-\$21 Spacer (shifted spaces-\$A
\$22-\$3F DETAILS OF SECOND FILE (file format as for first file)

The second file details are then followed by another two-byte spacer, and so the format continues for eight files per block. If no further files follow in a particular block, the rest of it remains filled with zeros.

The two bytes immediately preceding the file name are the pointers to the first data block of that particular file. For the first file these can be found at $\$ \emptyset 3$ and $\$ \emptyset 4$. The values (in hex) give, in turn, the track and sector. So $\$ 11 \$ \emptyset 1$ would point to track 17 sector 1 . The format of a typical data block or sector (of 256 bytes) starts simply enough with the pointer data for the next block of data in the file, again in track/sector order. The remaining bytes are filled with data. The last block used by the file starts with $\$ \emptyset \emptyset$ and the next byte value indicates the number of bytes of that block which are used.

10 PRINT"D $\boldsymbol{\pi}$ ":POKE5328Ø,Ø:POKE53281, Ø:GOSUB24ØØ
$2 \emptyset \operatorname{DIMA}(255), S(35): H X \$=" \emptyset 123456789$
ABCDEF':SE = 1:TR=18
30 FORI $=1 \mathrm{TO17:S}(I)=21: \mathrm{NEXT}$
40 FORI $=18 \mathrm{TO} 24: S(I)=19:$ NEXT
50 FORI $=25 \mathrm{TO} 0: \mathrm{S}(\mathrm{I})=18:$ NEXT
60 FORI $=31$ TO35:S $(I)=17:$ NEXT
70 PRINT:GOSUB1ØØ日:PRINT" \square "
80 A\$ = LEFT\$(T\$,1)
90 IFA\$ = "P"THENGOSUB12Ø0:GOTO7Ø
100 IFA\$ = "X"THENPRINT"BASIC":END
110 IFA\$ = "\$"THENGOSUB150Ø:GOTO7
120 IFA\$ > = " \emptyset "ANDA $\ll=$ " 9 "THEN
GOSUB16ØØ:GOTO7Ø
130 IFA\$ = "D"THENGOSUB650:GOTO70
140 IFA $\$=$ " S "THENGOSUB17 $00: G 0 T 07 \emptyset$
150 IFA\$ = "E"THENGOSUB18ØØ:GOT070
170 IFA\$ = "R"THENGOSUB19ØØ:GOT070

180 IFA\$ = "W"THENGOSUB210Ø:GOTO70
190 IFA\$ = "C"THENGOSUB230Ø:GOTO7Ø
200 IFA\$ = "H"THENGOSUB2400:GOTO7
210 PRINT".?UC?":GOTO70
650 OPEN15,8,15:OPEN8,8,8," \#":PRINT
\# 15,"U1:" $8 ; \emptyset ; 18 ; \emptyset: C L O S E 15: C L O S E 8$
655 OPEN1,8,2," "\$"
660 FORX $=1$ T0141:GET \# 1,A\$:NEXT
$67 \emptyset T \$(\emptyset)=$ "DELETED":T\$(1) = "SEQ":
$T \$(2)=$ "PROGRAM":T\$(3) = "USER":
T\$(4) = "RELATIVE"
$680 \mathrm{~J}=17:$ GOSUB940
$690 N \$=B \$$
$700 \mathrm{~J}=2$
710 GOSUB940
$7201 \$=B \$$
730 GET \# 1,A\$
$740 \mathrm{~J}=2$
750 GOSUB940
$7600 \$=B \$$
770 FORL $=1 \mathrm{~T} 088$
780 GET \# 1,A\$
790 NEXT
$80 \emptyset$ PRINT"DISK NAME:"N\$:PRINT" $\square \square \square$ $\square \square \square \square I D: ’ \mid \$: P R I N T " \square \square \square \square \square \square$ \square OS:"O\$" \mathbf{d} "
810 PRINT"LENGTH","TYPE","NAME \mathbf{d} "
820 FORP $=1$ TO8
830 GET \# 1,T\$,A\$,A\$
840 IFT\$ $=$ "'"THENT\$ $=$ CHR $\$(128)$
$850 \mathrm{~J}=15$
860 GOSUB940
$870 \mathrm{~N} \$=\mathrm{B} \$$
880 GET \# 1,A\$,A\$,A\$,A\$,A\$,A\$,A\$,A\$,A\$, L\$,H\$
890 L = ASC (L\$ + CHR\$ $(\emptyset))+256^{*}$ ASC
(H\$ + CHR\$($\emptyset)):$ IFL = ØTHEN93 \emptyset
$9 \emptyset \emptyset$ IFSTTHENCLOSE1:RETURN
910 PRINTL*256,T\$(ASC(T\$) - 128),N\$
920 IFP < 8THENGET \# 1,A\$,A\$
930 NEXT:GOT0820
$940 \mathrm{~B} \$=$ ""
950 FORL = ØTOJ
960 GET \# 1,A\$
970 IFA $\$<>$ CHR $\$(96)$ THENIFA $\$<>$ CHR $\$$
(160)THENB $\$=B \$+A \$$

980 NEXT:RETURN
1000 T\$ = "":PRINT".";
1010 PRINT" $\square \square " ;: G E T A \$: I F A \$=" "$
THEN1010
1020 IFA $\$=$ CHR $\$(13)$ THEN 1100
1030 IFA $\$=$ CHR $\$(20)$ THEN 1110
1040 IFLEN(T\$) > 10 THEN1010
1050 IFA\$ = " \square "ORA $\$=" \$ " T H E N 1 \emptyset 90$
$106 \emptyset$ IFAS < " \emptyset "THEN1Ø1Ø
1070 IFA\$ > "Z"THEN1010
$1090 T \$=T \$+A \$: P R I N T A \$;: G O T 01 \emptyset 1 \emptyset$
1100 IFT $\$<>$ ""THENRETURN
1110 IFT\$ = ""THEN1010
1120 T\$ = LEFT\$(T\$,LEN(T\$) - 1)
1130 PRINTA\$;:GOTO1010

1200 REM PRINT ROUTINE
$1210 \mathrm{X} \$=\operatorname{MID} \$(T \$, 3,2):$ GOSUB1300:S $=X$
$1220 \mathrm{X} \$=\mathrm{MID} \$(T \$, 6,2): G O S U B 130 \emptyset: F=X$
1230 FORI = STOFSTEP9
1240 X = I:GOSUB1400:PRINTH\$":";:FOR T=ØT08:IFI + T>255THENPRINT"**"): RETURN
$1250 \mathrm{X}=\mathrm{A}(I+\mathrm{T}):$ GOSUB1400:PRINTH\$ " \square ";:NEXT
$126 \emptyset$ FORT $=\emptyset$ TO8:A $=A(I+T): I F A<320 R$ A >91 THENA $=32$
1270 PRINTCHR\$(A);:NEXT:PRINT:NEXT: RETURN
$130 \emptyset A \$=\operatorname{LEFT} \$(X \$, 1) ; B \$=\operatorname{RIGHT} \$(X \$, 1):$ $F O R I=1$ T016
1310 IFA $\$=$ MID $\$(H X \$, I, 1)$ THENH $=$ $(I-1) * 16$
1320 IFB $\$=$ MID $\$(H X \$, I, 1)$ THENL $=$ (I-1)
1330 NEXT:X $=H+L:$ RETURN
$1400 \mathrm{H}=\operatorname{INT}(\mathrm{X} / 16): \mathrm{L}=\left(\mathrm{X}-\mathrm{H}^{*} 16\right)$
$1410 \mathrm{H} \$=\operatorname{MID} \$(H X \$, H+1,1)+\operatorname{MID} \$(H X \$$, $L+1,1):$ RETURN
$1500 \operatorname{IFLEN}(T \$)=5$ THEN1540
1505 IFLEN(T\$) < > 3THENPRINT"‘.?SX?";: RETURN
1510 X $\$=$ RIGHT\$(T\$,2)
1520 GOSUB1300
1530 PRINT".DEC"X:RETURN
1540 X $\$=$ RIGHT\$(T\$,2):GOSUB1300
$1550 \mathrm{M}=\mathrm{X}: \mathrm{X} \$=\mathrm{MID} \$(\mathrm{~T} \$, 2,2): G O S U B 1300:$ PRINT".DEC" $256{ }^{*} X+$ M:RETURN
$1600 \mathrm{~V}=\mathrm{VAL}(\mathrm{T} \$): \mathrm{IFV}>655350 \mathrm{RV}$ < OTHEN PRINT".??";:RETURN
$1610 \mathrm{M}=\mathrm{INT}(\mathrm{V} / 256)$
$1620 \mathrm{~N}=\mathrm{V}-\mathrm{M}^{*} 256$
$1630 \mathrm{X}=\mathrm{M}:$ GOSUB140Ø:A\$ $=\mathrm{H} \$: X=N:$

$$
\text { GOSUB14ØØ:A\$ }=A \$+H \$
$$

1640 PRINT".HEX \square "A\$:RETURN
$170 \emptyset$ PRINT"'LAST TRACK:\$";:X=TR:GOSUB 1400:PRINTH\$
1710 PRINT"‘ $\square \square \square \square$ SECTOR:\$";:X=SE: GOSUB1400:PRINTH\$
1720 RETURN
1800 X $\$=\operatorname{MID} \$(T \$, 3,2)$
1810 GOSUB130Ø
$1820 \mathrm{~A}=\mathrm{X}: \mathrm{X} \$=\mathrm{MID} \$(\mathrm{~T} \$, 6,2): G 0 S U B 1300:$ $B=X$
$1830 \mathrm{~A}(\mathrm{~A})=\mathrm{B}:$ PRINT"'OK":RETURN 1900 IFLEN $(T \$)=1$ THENGOSUB2000: RETURN
1910 X $\$=$ MID $\$(T \$, 3,2):$ GOSUB130Ø:IFX <1
ORX > 35THENPRINT"..?IT?";:RETURN
$1920 \mathrm{~A}=\mathrm{X}: \mathrm{X} \$=\mathrm{MID} \$(T \$, 6,2): G O S U B 130 \emptyset:$ IFX < ØORX > S(A)THENPRINT".?IS?";: RETURN
1930 TR = A:SE $=\mathrm{X}: G O S U B 200 \emptyset$
1940 RETURN
2000 OPEN15,8,15
$2 \emptyset 1 \emptyset$ OPEN8,8,8," \#"
$2 \emptyset 2 \emptyset$ PRINT \# 15,"U1:" $8 ; \emptyset ; T R ; S E$
2030 PRINT \# 15,"B - P:" $8 ; \emptyset$
$2 \emptyset 40$ FORI $=\emptyset$ TO255:GET \# 8,A\$:IFST $<>\emptyset$
ANDST < > 64THENPRINT".?DR?":
CLOSE8:CLOSE15:RETURN
2050 A $(\mathrm{I})=\mathrm{ASC}(\mathrm{A} \$+\mathrm{CHR} \$(\emptyset))$
2060 NEXT
2070 CLOSE8:CLOSE15:PRINT"OK":RETURN
$2100 \operatorname{IFLEN}(T \$)=1$ THENGOSUB2200: RETURN
$2110 \mathrm{X} \$=\mathrm{MID} \$(\mathrm{~T} \$ 3,3):$ GOSUB130Ø:IFX <1
ORX > 35THENPRINT".?!T?";:RETURN
$2120 \mathrm{~A}=\mathrm{X}: \mathrm{X} \$=\mathrm{MID} \$(T \$, 6,2):$ GOSUB130Ø: IFX < ØORX > S(A)THENPRINT"‘?IS?";: RETURN
2130 TR = A:SE = X:GOSUB22øØ
2140 RETURN
2200 OPEN15,8,15
2210 OPEN8,8,8," \#"
2220 PRINT \# 15,"B - P:" $8 ; \emptyset$
2230 FORI $=\emptyset T O 255:$ PRINT \# 8,CHR $\$($ A $(1)) ;:$
IFST $<>$ ØANDST $<>64$ THENPRINT
".?DW?":GOTO2250
2240 NEXT:PRINT \# 15,"U2:"'8;Ø;TR;SE
2250 CLOSE8:CLOSE15
2260 RETURN
2300 OPEN15,8,15
2310 INPUT \# 15,A,B\$,C,D
2320 PRINT"ERROR NO.:"'A
2330 PRINT" $\square \square \square \square \square$ TYPE: \square "B\$
2340 PRINT" $\square \square @ \square$ TRACK:"C
2350 PRINT" $\square \square \square$ SECTOR:"D
2360 CLOSE15:RETURN
2400 PRINT" $\mathbf{g P} \square X X \square X X \square \square-$ PRINT MEMORY
2410 PRINT"D $\square \square \square \square \square \square \square-$ DIRECTORY
2420 PRINT"R $\square \mathrm{XX} \square \mathrm{XX} \square \square-$ READ FROM DISK
2430 PRINT"'W \square XX \square XX $\square \square-$ WRITE TO DISK
2440 PRINT"E $\square \mathrm{XX} \square \mathrm{XX} \square \square-$ EDIT MEMORY
2450 PRINT"'S $\square \square \square \square \square \square \square \square-$ LAST SECTOR/TRACK
2460 PRINT" $\$ \square \square \square \square \square \square \square \square-$ HEX TO DECIMAL

2470 PRINT"(NUMBER) - DECIMAL TO HEX
2480 PRINT"C $\square \square \square \square \square \square \square \square-$
LAST ERROR
2490 PRINT"X $\square \square \square \square \square \square \square \square-$ EXIT
TO BASIC
2500 PRINT"H $\square \square \square \square \square \square \square \square-$
PRINTS MENU
2510 PRINT" ${ }^{\text {d }}$ IT \square - ILLEGAL TRACK
2520 PRINT"IS \square - ILLEGAL SECTOR
2530 PRINT'"SX \square - SYNTAX ERROR
2540 PRINT"UC \square - UNKNOWN COMMAND
2550 PRINT"DR \square - DISK READ ERROR
2560 PRINT"DW \square - DISK WRITE ERROR
2570 RETURN

USING THE COMMODORE DMON

When you RUN the program you'll see a menu offering eleven commands, as well as a list of error messages with their explanations. Each command is accessed by the letter shown, and the double Xs indicate you must input a number as explained below.

For a comprehensive directory, press Dthe lengths of the programs are shown in bytes, and both the deleted and the current file names are shown.

To read any part of the disk, press R then enter the number of the track and the sector, separated by spaces. Remember to use hex! Try R $12 \emptyset 1$ to read in the directory as stored on the disk. The data read in is stored in the disk buffer and can be displayed on the screen by pressing P , followed by the number of the start and end byte of the section you want to view. To see the entire contents use $P \emptyset \emptyset F F$. The byte numbers are shown in the left-hand column, the contents in hex are shown in the centre and the ASCII translation is shown at the right.

To change a byte, press E, followed by the number of the byte you wish to change and the new value. You'll see the new value appear in the correct place on the screen. To write this back to disk, press W followed by the destination track and sector.
The other commands available are S , which prints out the last track and sector accessed; $\$$ followed by a hex number to convert it to decimal; a decimal number on its own to convert it to hex; C to print the code of the last error; H to redisplay the menu, and X to return to BASIC.

When a file is scratched, the file type marker in the directory is altered. This marker immediately precedes the file Track and Sector (T\&S) pointers which in turn come just before the file name. A directory listing can show several types of file, DEL, SEQ, PRG, USR and REL.

The files are normally open-which means ready for (over)writing-or closed. A file is
opened when 'scratched' to release its allocation of storage blocks. When closed, a file is 'active' in the sense that it has been stored. But it is possible to lock these files so that they cannot be scratched easily.

Using the disk monitor you can locate the file type byte easily enough and examine its status. The following file types and hex value designations exist:
File type

	Closed	Open	Protected
DELeted	$\$ 8 \emptyset$	$\$ \emptyset \emptyset$	-
SEQuential	$\$ 81$	$\$ \emptyset 1$	$\$ C 1$
PRoGram	$\$ 82$	$\$ \emptyset 2$	$\$ C 2$
USeR	$\$ 83$	$\$ \emptyset 3$	$\$ C 3$
RELative	$\$ 84$	$\$ \emptyset 4$	$\$ C 4$

Thus a program file which has been scratched displays $\$ \emptyset 2$ in the file type byte position. If the sectors or blocks of that file have not been overwritten, the file data can be recovered by using the disk monitor to alter the value to $\$ 82$ (the value it would have if the file was active).

But by altering the value to $\$ \mathrm{C} 2$ you can actually lock the file to prevent scratching. And using the appropriate values in the third column, you can protect other types of file. On a subsequent directory listing, the file type letters will have $\mathrm{a}<$ next to the abbreviation to denote locking. If you did want to remove the files you can do so by NEWing the entire disk, or using the editor to change the values to the appropriate scratch value ('open').

If part of a file has been corrupted-as it would be if you were attempting to recover a scratched file some of whose allocation of blocks had been overwritten by an active file-you will have to 'follow through' the various T\&S pointers to gauge the extent of the damage.

Start at the directory (\$12 \$01) and establish the T\&S pointer to the first data track of the file you're trying to recover. Then use the disk monitor to examine that track. If this appears intact-that is, it doesn't contain random garbage-proceed to examine the next one in the chain. The T\&S location of this is given in the first two bytes of the sector you're currently examining.

If you come across a sector in the chain that is corrupted, first see whether repair work is possible simply by overwriting one or two of the earlier pointers. By rewriting an earlier pointer the file effectively skips the corrupted sector. This will enable you to recall information using the parent program, tidy up the information so that the end of one sector matches the start of the next, and reSAVE the whole file on a new disk.

I

The most common types of disk filing system (DFS) used with the BBC computer are Acorn's own and the Watford system. Both can make use of the disk monitor program, however, since the Watford DFS includes an EDIT command the following description is intended for the Acorn DFS.

Disks for use with the BBC have either 40 or 80 tracks, each containing ten sectors per track so you have 400 or 800 sectors on each side. Each sector is composed of 256 bytes of storage space.

Catalogue information (obtained using ${ }^{*}$ CAT) accesses track \emptyset, sectors \emptyset and 1 whose format is shown below. In addition to all the file names (a maximum of 31), you can access (and so adjust) the pointers-sector references-of the data which goes to make up any one of those files. By reading and adjusting these directly you can recover programs or data which may be present but inaccessible by conventional means.

Track \emptyset SECTOR \emptyset FORMAT

Byte Purpose
$\& \emptyset \emptyset-\& \emptyset 7$ First eight characters of disk title, padded with spaces
$\& \emptyset 8-\& \emptyset \mathrm{E}$ First file name, padded with spaces (seven characters max.)
$\& \emptyset$ F Directory letter of first file
$\& 1 \emptyset-\& 16$ Second file name, padded with spaces (seven characters max.)
\&17 Directory letter of second file
The eight-byte name and directory blocks continue up to a maximum of 31 files.

TRACK \emptyset SECTOR 1 FORMAT

Byte Purpose
$\& \emptyset \emptyset-\& \emptyset 3$ Last four characters of disk title (padded)
$\& \emptyset 4$ Count of number of write operations made to the disk
\&05 Eight-byte block count (should equal 8 times number of active files)
\&06 Individual bit settings (see below)
$\$ \emptyset 7$ Number of sector on disk (eight LSBs of $1 \emptyset$-bit number)
$\& \emptyset 8-\& \emptyset \mathrm{~F}$ FIRST FILE STORAGE MAP
File format:
$\& \emptyset 8-\& \emptyset 9$ Load address, LSB first. This would be zero for a data file or $\& 19 \emptyset \emptyset$ for a BASIC program
$\& \emptyset \mathrm{~A}-\& \emptyset \mathrm{~B}$ Execution address，LSB first． Zero for a data file，or $\& 8023$ for a BASIC I or \＆8ØIF for BASIC II．
$\& \emptyset C-\& \emptyset D$ File length（bytes），LSB first
$\& \emptyset \mathrm{E}$ Individual bit settings（see below）
$\& \emptyset$ F Start sector（eight LSBs of $1 \emptyset$－ bit number）
\＆10－\＆17 SECOND STORAGE MAP
File format as above
And so on up to 31 files．
The individual bit settings in $\& \emptyset 6$ and $\& \emptyset \mathrm{E}$ are as follows．Setting bits 5 and 4 of $\& \emptyset 6$ give start－up option（！BOOT）while bits 1 and \emptyset are the two MSBs（most significant bits）of a 19－ bit number．The remaining eight bits are stored in \＆$\emptyset 7$ ．
The significance of bit settings in location ØE are as follows： 7 and 6 are two MSBs of 18－ bit execution address（LSBs in $\& \emptyset \mathrm{~A}$ and \＆\emptyset B）．Bits 5 and 4 provide the two MSBs of the file length（LSB in $\& \emptyset \mathrm{C}$ and $\& \emptyset \mathrm{D}$ ）if required．Likewise bits 3 and 2 look after two MSBs for a load address if required．Bits $1, \emptyset$ provide the two MSBs for a 10 －bit file start sector（LSBs in \＆$\emptyset \mathrm{F}$ ）．
The start sector information in byte $\& \emptyset \mathrm{~F}$ and bits 1 and \emptyset of byte $\& \emptyset \mathrm{E}$ give the starting point of the file．For example，if $\& \emptyset \mathrm{~F}$ is 38 and the MSBs are zero，the file is located at $\& 38 / 1 \emptyset=5.6$ ，that is，track 5 sector 6 ．If $\& \emptyset \mathrm{~F}$ is 43 and bit \emptyset in $\& \emptyset E$ is set，the file is located at $\& 143 / 1 \emptyset$ ，or track 32 ，sector 3 ．

It is useful to note that the load address （ $\& \emptyset \mathrm{E} \& \emptyset 9$ ）is normally $\& \emptyset \emptyset \emptyset$ for a data file， $\$ 19 \emptyset \emptyset$ for BASIC（remember，LSB first！）． The execution address is again $\& \emptyset \emptyset \emptyset \emptyset$ for a data file and usually $\& 8 \emptyset 23$ for BASIC．

The appearance of the file map for BASIC program of 12067 bytes might take the form： ØØ 19238023 2F CC Ø2．This information can also be obtained in a slightly different form using the command ${ }^{*} \mathrm{NFO}^{*} .{ }^{*}$ ．
10 MODE3
20 DIM block 12
30 DIM buffer 255
40 printer $=\emptyset$
50 DR\％＝ 0
60 PROCload（DR\％，$\varnothing, \emptyset, 1)$
70 REPEAT
80 PROCprint
90 VDU28，Ø， $24,79,21$
100 PROCcommand
110 UNTIL com\＄＝＂END \square＂
120 END
130 DEFPROCload（DR\％，TR\％，SCT\％，RNW）
140 X\％＝block MOD $256:$ Y\％＝block DIV 256
$150 \mathrm{~A} \%=\& 7 \mathrm{~F}$

160 block？ $0=D R \%$
170 block！1＝buffer
180 block？ $5=3$
190 block？ $6=84 \mathrm{~B}+8^{*}$ RNW
200 block？7＝TR \％
210 block？ $8=$ SCT\％
220 block？ $9=\& 21$
230 CALL\＆FFF1
240 ENDPROC
250 DEFPROCprint
260 CLS：VDU26
270．IF printer＝ 1 THEN VDU2 ELSE VDU3
280 PRINT＂Track $\square " ;$ PR\％；＂$\square \square$ Sector $\square " ;$ SCT\％；＂$\square \square$ Drive $\square " ; D R \%$
$29 \emptyset$ PRINT
300 FOR I\％＝ 0 TO 1
310 PRINT＂$\square \square \square \square \square \square \square$ bytes（in hex）

320 NEXT
330 PRINT
340 line $=32:$ pos $=7:$ buff $=$ buffer
350 FOR lin $=1$ TO line
$360 \operatorname{L}=\operatorname{LEN}(S T R S(\operatorname{lin}-1) * 8))$
$37 \emptyset$ FOR I＝ 1 TO 4－L：VDU32：NEXT
380 PRINT；STR\＄（（lin－1）＊8）；＂ロロ＂；
390 FOR linpos $=\emptyset$ TO pos
400 cont $=$ linpos？buff
410 IF cont＜\＆10 THEN PRINT＂＂＂；
$42 \emptyset$ PRINT；～cont；＂\square＂；
430 NEXT
440 PRINT＂\square＂；
450 FOR linpos＝\emptyset TO pos
460 cont $=$ linpos？buff
470 asc $=($ cont >31 AND cont $<127)$
480 IF asc THEN PRINTCHR\＄cont；ELSE PRINT＂．＂；
490 NEXT
500 IF lin MOD2＝\emptyset THEN PRINT
510 buff $=$ buff +8
520 NEXT
530 PRINT
540 VDU3
550 ENDPROC
560 DEFPROCcommand
570 INPUT＂$\$$＂com\＄：comlen＝LEN（com\＄）：
com\＄＝com \＄＋LEFT\＄（＂$\square \square \square \square$＂，4－ comlen）
580 command＝（INSTR（＂ロロロロDRV TRK
SCT INS PRT WRT END
SHOW＂，com\＄，（））DIV4＋ 1
590 ON command GOTO 600，610，620，630，
640，650，660，680，670
$6 \emptyset 0$ PROCcommand：ENDPROC
610 PROCdrive：ENDPROC
620 PROCtrack：ENDPROC
630 PROCsector：ENDPROC
640 PROCinsert：ENDPROC
650 PROCprinter：ENDPROC
$66 \emptyset$ PROCload（DR\％，TR\％，SCT\％，Ø）：ENDPROC
670 PROCload（DR\％，TR\％，SCT\％，1）：ENDPROC
680 ENDPROC

690 DEFPROCdrive
 700 INPUT＂Drive \square＂，DR\％
 710 ENDPROC
 720 DEFPROCprinter
 730 IF printer $=1$ THEN printer $=\emptyset$ ELSE printer $=1$
 740 ENDPROC
 750 DEFPROCinsert
 760 REPEAT：INPUT＂Offset from start
 ？．．．．＂os：UNTIL os $>=\emptyset$ AND os <256
 $77 \emptyset$ REPEAT：INPUT＂New value ？．．．．＂${ }^{\text {＂val\＄：val }=~}$
 EVAL（val\＄）：UNTIL val $>=\emptyset$ AND val <256
 780 buffer？os＝val
 790 ENDPROC
 800 DEFPROCtrack
 810 REPEAT
 820 INPUT＂Track $\square \square$ ？\square＂TR\％
 $83 \emptyset$ UNTIL TR\％＞＝\emptyset AND TR\％$<8 \emptyset$
 840 PROCload（DR\％，TR\％，SCT\％，1）
 850 ENDPROC
 860 DEFPROCsector
 870 REPEAT
 880 INPUT＂Sector $\square \square$ ？\square＂SCT\％
 890 UNTIL SCT\％＞$=\emptyset$ AND SCT\％＜ 10
 900 PROCload（DR\％，TR\％，SCT\％，1）
 910 ENDPROC

USING THE BBC DMON

As soon as you RUN the program you＇ll see a display of the bytes in track \emptyset ，sector \emptyset ，drive \emptyset along with an ASCII equivalent of the hex． To view any other part of the disk enter DRV to select the drive，TRK for the track，and SCT for the sector．Try swapping between sectors \emptyset and 1 ，which shows the file names and then， in the same positions，the file storage maps．

Type INS to insert（change）any of the bytes．First type in the number of the byte you wish to change，then the new value－in ASCII for the file names in sector \emptyset or in hex for the storage map in sector 1．Do not use decimal numbers．

When you＇ve edited the sector you can write it back to the disk using WRT．

If you want a printout at any time type PRT to turn it on and PRT again to turn it off．If you change disks you may need to type SHOW to display the new disk，although the sector will normally be displayed automatically． Type END when you＇ve finished．

The DMON program can be used for general maintenance work on disk files but perhaps the most important use is recovery of ＇lost＇files．First you need some information about the file length and，more important，the sector at which it begins．Under normal circumstances－that is，before a file is corrupted－this information can be obtained simply enough by keying ${ }^{*}$ NFO $<$ filename $>$ ．
Unless you already have this information logged（a good idea for any important file）
you are faced with a rather boring exploration of the disk to find, initially, the starting track and sector of the lost file and its length ($\& \mathrm{C}$, $\& \emptyset D)$. Convert the track and sector information into a hexadecimal byte plus extra MSBs using the reverse of the procedure described on page 1613.

To recover the file, choose the next free 8byte block in sector \emptyset and construct a suitable new filename plus directory letter $(7+1$ bytes), entered as ASCII codes of the characters. Be careful not to overwrite an existing active file's name.

Then use DMON to call up sector 1 . Adjust $\& \emptyset 5$ to cater for the extra file-simply increment it by 8 .

You've created a new file and so a separate storage map-an extra eight bytes of data from $\& \emptyset 8$ to $\& \emptyset \mathrm{~F}$-is needed for the file. Put these into the first available 8 -byte batch, corresponding to the file name. The first two bytes of this is the load address- $\& \emptyset \emptyset \emptyset \emptyset$ (data) or $\& 19 \emptyset \emptyset$ (BASIC)-the next pair of bytes is the execution address.

Now use the editor to write in the length of the file on the next pair of bytes (LSB first!). If you don't know how long it is put in $\& \emptyset \emptyset$, $\& 1 \emptyset$ for the time being.

The one problem area is the setting of the value for the seventh byte, the two LSBs of which indicate the start sector of the file you are trying to recover. Remember, this information is already on the disk and a start point must be located and entered in the seventh byte before a file can be recovered.

When you've done this, exit the disk monitor. If you were unsure of the files length, first type PRINT ~ LOMEM and note down the figure. Then LOAD the program or data to check it has been recovered and find LOMEM again. The difference between these two values is the length of the file and can be inserted into bytes $\& \emptyset \mathrm{C}$ and $\& \emptyset \mathrm{D}$ of the storage map. Now *SAVE the file onto another disk just to make sure.

E

The Dragon Data disk drive has its own special interface containing the operating system, and the following information applies specifically to this unit.

The disks are divided into $4 \emptyset$ or $8 \emptyset$ tracks each containing 18 sectors of 256 bytes each.

The directory, which keeps track of all the files on the disk, is stored on tracks 16 and $2 \emptyset$. These tracks are identical, but track 16 is used for the directory and track $2 \emptyset$ for the system. The directory can be accessed by typing DIR, which then displays a list of all files with information on their type, length and number of bytes free.

Tracks 16 or 20 are the most common ones to access using the disk monitor, typically to reinstate an accidentally deleted file. But to find your way around you need a map of the information stored in the directory.

TRACK 16 SECTOR 3

Byte Purpose

1 Descriptor code, eg $\emptyset \emptyset$ for valid file, $\emptyset 2$ for protected file, 81 for deleted file
2-9 Name of file padded with zeros
10-12 File descriptor eg BAS, BAK
13-14 High and low bytes of 16 bit number giving the start track and sector
15 Total number of sectors used
16-24 Used to point to linked files
16,17 High and low bytes pointing to next start sector
18 Number of sectors used
19-21 Same for next section
22-24 Same for final section
25 Number of bytes used in last sector
Sectors 1 and 2 of tracks 16 and $2 \emptyset$ are used to tell the computer which sectors are in use. Each byte represents eight sectors, one bit per sector, counted from track zero, sector 1. Each bit starts off at \emptyset for a newly formatted disk but is set to 1 as that sector is filled. When a file is deleted the bit is changed back to zero.

The appearance of the directory entry for a BASIC file might take the form:
00 A B C $00 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0$ B A S 01441800 FC $09 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset 0 \emptyset \emptyset \emptyset \emptyset D B$
This is a file called ' $A B C$ ' starting at position $\& H 0144, \& H 18$ sectors long, with the second edition starting at $\& H \emptyset \emptyset \mathrm{FC}, 9$ sectors long, and $\& H D B$ bytes in the last sector. The position is worked out as follows: $\& H 0144=324$ decimal, divide by 18 (there are 18 sectors per track) to find the track, equals 18 . Since there's no remainder it starts at sector 1 . The total length is $\& \mathrm{H} 18+\& \mathrm{H} 8$ sectors plus $\& H D B$ bytes, equals 8411 bytes.
10 CLEAR5000:DIMA\$(1),D\$(1),D(160):
$C \$=" \uparrow "+$ CHR $\$(10)+$ CHR\$ $(8)+$
CHRS(9) +"AH" + CHR $(13)+" \square ": D=1$
$2 \emptyset$ CLS:PRINT@13,"menu"
30 PRINT@106,"IOAD SECTOR":PRINT
@170,"vIEW/EDIT SECTOR":PRINT@234, "sAVE SECTOR":PRINT@298,"cATALOGUE"
$40 \mathrm{R} \$=$ INKEY\$:IFR\$ = "" THEN4
$5 \emptyset R=$ INSTR("LVSC", R\$):IFR = \emptyset THEN4 \emptyset
60 IFSL $=\emptyset$ AND $(R=20 R R=3)$ THENPRINT:
PRINT"NO SECTOR LOADED":FORK = 1
TO2000:NEXT:GOTO20
70 CLS:ON R GOSUB1000,2000,3000,4000

80 GOTO20

1000 SL = 1:GOSUB5000
1010 SREADD,T,S,A\$(0),A\$(1)
1020 RETURN
$2000 \mathrm{~F}=1: \mathrm{H}=1: \mathrm{CLS}:$ PRINT"aSCII OR hEX
LISTING ?"
$2010 \mathrm{R} \$=$ INKEY $\$: I F R \$<>$ "A"AND
R\$ < > "H" THEN2010
2020 AS $=\emptyset: I F R \$=" A "$ THENAS $=1$
2030 IFF $=\emptyset$ THEN2050
2050 PK $=96: \mathrm{CP}=1535: \mathrm{IFAS}=1$ GOSUB
2320 ELSEGOSUB2280
2050 POKECP, PK:CP $=1024+Y^{*} 32+X^{*} 3:$
PK = PEEK(CP):POKECP,239
2060 PRINT@321,"TOP BYTE =";H
$2070 \mathrm{R} \$=$ INKEY $\$: I F R \$=$ " " THEN2070
$2080 R=\operatorname{INSTR}(C \$, R \$): I F R=\emptyset$ THEN2070
$2090 \mathrm{~F}=0$:ON R GOTO 2100,2110,2120,
2130,2140,2150,2160,2170
$2100 Y=Y-1: G O T O 2210$
$2110 Y=Y+1:$ GOTO2210
$2120 X=X-1$:GOTO2210
$2130 \mathrm{X}=\mathrm{X}+1$:GOTO2210
2140 AS = 1:GOTO2040
2150 AS = Ø:GOTO204Ø
2160 RETURN
2170 PRINT@384,"INPUT NEW CONTENTS
(HEX) $\square{ }^{\prime} ;$ INPUTH\$
$2180 \mathrm{~V} \$=\mathrm{CHR} \$(\mathrm{VAL}($ " $\& H$ " $+\mathrm{H} \$)): P=H+$
$Y^{*} 11+X$
$2190 \operatorname{MIDS}\left(\mathrm{~A} \$(\mathrm{P} / 128), \mathrm{P}+128^{*}(\mathrm{P}>128)\right.$,

1) $=V \$$
$2200 \mathrm{~F}=1:$ GOTO2030
2210 IFY < \quad THENH $=H-44: Y=\emptyset: F=1$
$2220 \mathrm{IFY}>7$ THENH $=\mathrm{H}+44: \mathrm{Y}=7: \mathrm{F}=1$

2230 IFX $<\emptyset$ THENX $=10: Y=Y-1:$ IFY $<\emptyset$
THENH $=H-11: Y=\emptyset: F=1$
2240 IFX > 10 THENX $=\emptyset: Y=Y+1: I F Y>7$
THENY $=7: H=H+11: F=1$
2250 IFH $=-100 \mathrm{RH}=-43$ THENH $=1$:
$F=\emptyset:$ ELSEIFH <1 THENH $=1: F=1$
2260 IFH $=1790$ RH $=212$ THENH $=168$:
$F=\emptyset$ ELSEIFH >168 THENH $=168: F=1$
2270 GOTO2030
2280 CLS:FORJ $=\mathrm{H}$ TOH +87 STEP11:FOR T = ØT01 \emptyset
2290 PRINTRIGHT\$("0" + HEX\$(ASC (MID\$(A\$(J/128), $\mathrm{J}+\mathrm{T}+128^{*}$
(($\mathrm{J}+\mathrm{T})>128))$), ,2);" $\square " ;$
$230 \emptyset$ NEXT:PRINTCHR\$(8);:NEXT
2310 RETURN
2320 CLS:FORJ $=H$ TOH +87 STEP11:FOR $T=\emptyset T 01 \emptyset$
$2330 \mathrm{G}=\mathrm{ASC}\left(\mathrm{MID} \$\left(\mathrm{~A} \$(\mathrm{~J} / 128), \mathrm{J}+\mathrm{T}+128^{*}\right.\right.$ $((\mathrm{J}+\mathrm{T})>128))):$ IFG <32 THEN2350
2340 PRINT" $\square " ;$ CHRS(G);" $\square " ;$ GOTO236Ø
2350 PRINTLEFT\$(" $\emptyset "+$ HEX $\$(G), 2)$;" $\square " ;$
2360 NEXT:PRINTCHR\$(8);:NEXT:RETURN
3000 CLS:PRINT"SAVE TO SAME SECTOR (Y/N) ?"
$3010 \mathrm{R} \$=\mathrm{INKEY} \$: I F R \$<>$ " Y "AND
R $\$<>$ " N " THEN3010
3020 IFR $\$=$ " Y " THEN3040
3030 CLS:GOSUB5000
3040 PRINT:PRINT"ARE YOU SURE (Y/N) ?"
$3050 \mathrm{R} \$=$ INKEY $\$: I F R \$<>$ " Y "
ANDR\$ < > "N" THEN3050
3060 IF R $\$=$ " N " THENRETURN
3070 SWRITED,T,S,A\$($\emptyset), A \(1)
3080 RETURN

4000 GOSUB5050
4010 PRINT \# PR,TAB(14);"START $\square \square$ NO."
4020 PRINT \#PR," $\square \square$ NAME $\square \square$ TYPE \square
TR $\square \square$ SC \square SECS \square LEN"
4030 FORJ $=\emptyset$ T015:SREAD1,16, $\mathrm{J}+3, \mathrm{D} \(0), D (1)
4040 FORK $=1$ TO250 STEP25
4050 GOSUB6000
4060 IFASC(V\$) $<>\emptyset$ ANDASC(V\$) $<>2$
THEN4120
4070 PRINT \# PR,MID\$(V\$,2,8);TAB(8);"."; MID\$(V\$,10,3);
$4080 \mathrm{TS}=-1: \mathrm{FORP}=13$ T022 STEP3:
$V=256^{*}$ ASC(MID\$(V\$,P)) + ASC(MID\$
$(\mathrm{V} \$, P+1)): E B=A S C(M I D \$(V \$, P+2)):$
$T S=T S+E B: I F E B=\emptyset$ THEN411 0
4090 IFP < > 13 THENPRINT \# PR
4100 PRINT \# PR,TAB(12);INT(V/18);TAB(16);
$1+\mathrm{V}-18^{*} \operatorname{INT}(\mathrm{~V} / 18) ; \operatorname{TAB}(2 \emptyset) ; \operatorname{ASC}(\mathrm{MID} \mathrm{\$}$ (V\$,P + 2));
4110 NEXTP:PRINT \# PR,TAB(24);256*TS +
ASC(MID\$(V\$,25))
4120NEXTK,J:R\$ = INKEY\$:IFPR $=-2$ THEN 4140
$4130 \mathrm{R} \$=$ INKEY $\$: I F R \$=$ "" THEN4130
4140 RETURN
5000 INPUT"TRACK NUMBER $(\emptyset-39) \square " ; T$
5010 INPUT"'SECTOR NUMBER
(1-18) $\square " ; S$
5020 INPUT"DRIVE NUMBER $(1-4) \square$ ";D
5030 IFD > 40RD < 10RT > 390RT < Ø0 R
S > 180RS < 1 THEN5000
5040 RETURN
5050 PR $=\emptyset: \operatorname{IF}(\operatorname{PEEK}(65314)$ AND 1$)=1$ THEN RETURN

5060 PRINT"OUTPUT TO PRINTER (Y/N) ?"

$5070 \mathrm{R} \$=$ INKEY $\$: I F R \$<>" Y$ "AND
$R \$<>$ " N " THEN5070
5080 IFR $\$=$ " Y " THENPR $=-2$
5090 RETURN
$6000 \mathrm{~V} \$=\mathrm{MID} \$\left(\mathrm{D} \$(\mathrm{~K} / 128), \mathrm{K}+128^{\circ}\right.$
($\mathrm{K}>128$),25):IFLEN(V\$) < 25 THENV $\$=$
$\mathrm{V} \$+\mathrm{MID}(\mathrm{D} \$(1+\mathrm{K} / 128), 1,25-\operatorname{LEN}(\mathrm{V} \$))$
6010 RETURN

USING THE DRAGON DMON

Type in or LOAD the program then insert the disk you intend to work on. Use an unimportant disk while you are practising. Type RUN and you'll see a menu offering four options: Load sector, View/edit sector, Save sector, Catalogue. Press C first and you will see a detailed catalogue of all your files. The list shows the file name, type, start track and sector, number of sectors and the length in bytes. If a file consists of several linked sections then the start track and sector of each section is shown. If you have a printer it is worth taking a copy to keep with your disk.

Now type L to load a sector. Try the directory first, track 16, sector 3. Type V to view. Press A or H at any time to see the listing in either ASCII or hex. You should be able to relate the numbers or letters to the directory map shown earlier.

Use the arrow keys to move the cursor to any byte you wish to change then type in the new value (in hex). Press space to enter the number. Only part of the sector is shown on the screen. To see the rest, move the cursor to the bottom line and the screen will scroll up. The current number of the byte in the top left corner is continuously displayed.

When you've finished editing the sector you can save it back on the disk by returning to the menu and pressing S .

When a file is deleted on the Dragon, the program descriptor byte in front of the file name is changed to 81, but the file name is not deleted. Using the disk monitor to look at the directory you can easily find this byte and change its value to $\emptyset \emptyset$, for a valid file. You have to change this byte in both track 16 and 20. If you now press BREAK and type DIR you'll see that the file name has reappeared, and you can load the program.

The best thing to do now is to SAVE this program on another disk and then delete the file on the old disk once more. This is because, although you have reinstated the file name, you have not reset the bits relating to that file in sectors 1 and 2 of the directory. It is possible to set these bits, but it is extremely difficult to find the correct ones, and if you make a mistake you could corrupt other files on your disk.

MUSIC
MICROS,AND MIDI

Micro music is only just starting to open up. The introduction of MIDIbased equipment allows you to link computers to music synthesizers and run one off the other ...

Sound has become one of the features most people expect to find on a home microcomputer-some people may even be swayed towards buying a particular computer because of its sound capabilities. In addition to the music you can make on your computer, a way of connecting many home microcomputers to synthesizers and other kinds of musical instruments is now being introduced and becoming freely available. The standard is called MIDI-Musical Instrument Digital Interface-and opens up a whole new range of possible uses for your computer.

SOUND FROM MICROCOMPUTERS

Sound from microcomputers has come a long way from the buzzes and bleeps produced by the earliest models with sound, towards being able to play music and produce sound effects. Of the computers covered in INPUT, the Spectrum offers very simple sound, using its BEEP command and the Dragon can be programmed to play tunes via its PLAY command. On the Spectrum and the Dragon, the notes always sound the same-a very electronicsounding pure tone. The computers also cannot produce more than one note at a time from BASIC.

With the Commodore 64 and the BBC it's a slightly different story. They have what are amongst the most sophisticated sound facilities to be found on microcomputers, both computers having their own dedicated sound chip, which offers a far greater range of musical possibilities. Both the computers have three musical channels, or voices, (the BBC has a noise channel, too) which can be played either on their own or together (single notes or chords). You aren't stuck with a single note 'quality' either-you can shape the sound using envelopes (see pages 1138 to 1144).

The Acorn Electron is a stripped-down version of the BBC, with only one music channel or one noise channel, although retaining all of the BBC's other sound facilities.

If you have typed in any of the sound programs in INPUT (such as those on pages 701 to 707 or pages 985 to 991) you will know what is possible from your computer. Even
the most sophisticated sounds that can be produced by the most sophisticated computers are not up to performance or recording standards, not to mention the drawbacks of trying to play music on a QWERTY keyboard. Even at its best, the micro falls some way short of a purpose-built musical instrument.

MUSICAL INSTRUMENTS

The story of musical instrument development in the last few decades closely parallels that of calculating machines. Traditionally, instruments were mechanical-skins being hit, strings being plucked or bowed, and so on. Gradually, the increasing need for greater volume in live performances, and the demands of recording, led to instruments such as guitars and pianos being electrified-and finally, over the past few years, purely electronic musical instruments, such as synthesizers, have appeared. Just as calculating machines have evolved from the mechanical abacus to the modern microcomputer incorporating digital electronic technology, the latest musical instruments are filled with microchips.

Modern synthesizers are extremely sophisticated devices. Instead of the limited number of notes which can be played on a computer, and the limited (or non-existent) enveloping facilities, you'll be faced with a bewildering array of possibilities. Typical, medium-priced synthesizers allow you to play chords of up to eight notes on a proper keyboard. Almost all machines offer an array of preset sounds, so if you want the sound of a piano, or a violin, you merely have to press the correct button. Presets aren't the whole story though, you can twiddle to your heart's content to produce almost any sound you desire-the ad-man's dream of the synthesizer that can be a whole orchestra in your front room isn't here yet, but is probably lurking in the wings somewhere.

When synthesizers are mentioned, most people immediately think of the keyboard instruments, which are by far the most common type of synthesizer. But since the heart of the synthesizer is really just a box of electronics for producing sounds, which can be triggered by some kind of signal, there is

-	SYNTHESIZERS
-	COMPUTER SOUND
-	MUSICAL INSTRUMENTS
-	KEYBOARDS
	DRUM MACHINE

	MIDI INTERFACE
$\mathbf{~ C O N N E C T I N G ~ C O M P U T E R S ~}$	
	TO SYNTHESIZERS

MIDI linking a computer, a drum machine and a synthesizer. Musical information can be stored on disk

no reason, in theory, why any kind of instrument cannot be used for triggering the electronics. In practice, it's a slightly different story. For various technical reasons, the keyboard remains the most popular kind of synthesizer instrument, although you can buy guitar synthesizers, which are played exactly like a guitar, but sound however you wish. There are also drum synthesizers-as distinct from synthetic drum machines-which are triggered by striking a series of pads.

Drum machines, on the other hand, are pre-programmed to provide a rhythmic backing without the intervention of a performer. But these, too, come within the range of synthesizers. Until recently, drum machines had a very characteristic sound, so any record made with a machine instead of a drummer was instantly recognizable. As technology advances, it's getting rather more difficult to tell. Most drum machines offer some preset rhythms and also have memory facilities which allow you to create and store your own rhythm pattern.

It's this last facility of drum machines which points the way towards a real musical breakthrough. Until recently, musical ability has always been dependent on manual dexterity-being able to move one's fingers quickly and fluently over a keyboard, or being able to hit a drum accurately and on time. With wind instruments, the tricky skill of breath control comes into it, too. The advent of the programmable musical instrument changes all that.

The programmable drum machine isn't a substitute for musical talent. You still need to be able to understand rhythm, and to 'hear' the desired effect in your mind. What the machine does do is to free musical talent from a dependence on manual dexterity-and in
this case from a need to purchase an expensive and bulky drum kit.

The keyboard synthesizer already has the facility to sound like virtually any instrument you choose. So if you add an ability to
program its performance, a whole world of music opens up even to those people whose fingers are all thumbs. Enter MIDI, a system which allows you to add programming to the synthesizer.

A MIDI bus can contain up to 16 channels of information, controlling as many as 16 instruments

printers or modems. In this case, although MIDI is used exclusively in the world of music, the role of the interface is exactly the same-to transfer standard-formatted information between one place and another. Its main role as a standard is to make sure that the information is transmitted in such a way that any MIDI-compatible piece of equipment will understand the information received.

There have been previous attempts to impose a standard for communication between musical instruments which have failed to become generally accepted. The story seems different for MIDI-all of the synthesizers and drum machines being produced by two of the world's leading keyboard manufacturers, Yamaha and Roland, adhere to the standard, and now a range of computer equipment compatible with the standard is arriving. The standard seems set to be universally adopted by all manufacturers both of electronic musical equipment and of the computer equipment which can be used with them.

Each piece of MIDI-compatible equipment has three five-pin DIN sockets. These are labelled 'IN', 'OUT' and 'THRU' (some older MIDI equipment may not have 'THRU'). 'IN' allows the equipment to receive MIDI signals from another piece of MIDI equipment. 'OUT' is simply the reverse, allowing one piece of MIDI equipment to send out MIDI signals to another piece of MIDI equipment. 'THRU' sends a direct copy of the incoming information on to another piece of MIDI equipment. This means you can drive several pieces of equipment at the same time by connecting together via the 'THRU' sockets. So equipment which does not have 'THRU' is much more limited.

MIDI allows up to 16 separate channels of information to be transmitted simultaneously. Each channel allows the musician to control a separate instrument, but the information co-exists in the same wire. Each piece of equipment 'tunes in' to the information being sent to it, a little like a television receiver tunes in to a particular television channel.

HOW DO I USE MIDI?

MIDI has been around since 1982, although it has only just been brought to the attention of home computer owners. Musicians have been using MIDI to trigger one instrument from another. For example, two synthesizers can be set to produce different sounds, but be played simultaneously from one keyboard, by connecting the two instruments together via MIDI and playing the keyboard of one of the two instruments.

MIDI also allows a musician to connect a drum machine to a keyboard and synchronize a rhythm track with the melody. Other possibilities include connecting a sequencer. A sequencer is a device which remembers what has been played and allows it to be played back. There are two types-real-time and step-time. A real-time sequencer plays back exactly what the musician has played, whereas a step-time sequencer literally steps through the tune, with the musician playing each note in turn, filling in individual slices of time, until the tune is completed.

MIDI AND HOME COMPUTERS

Along with the launch of computers using the MSX standard has come publicity about the relationship between MIDI and home computers. Yamaha have introduced the CX5M music computer, an MSX computer with a built-in synthesizer. Adding a piano-type keyboard to the computer gives the owner a fully fledged synthesizer. The machine opens up all sorts of possibilities to musiciansmusic can be composed on a monitor screen, or the computer can be used as a sequencer without extra hardware.

This computer costs considerably more than a BBC, but you can get a similar set-up if you own a Spectrum, Commodore 64, or BBC by using your computer connected to a MIDI synthesizer. You'll need a MIDI interface box to plug into your computer, a connecting lead, and some software.

Costing less than a Spectrum, the interface box will allow you to connect your computer to any piece of MIDI-compatible equipment. At present, with the price of MIDIcompatible synthesizers starting at well in excess of a BBC, this is an expensive way for home computer users to extend their music
making capabilities, but like printers, colour monitors and disk drives, the prices of instruments can be predicted to fall. In the near future a synthesizer will probably be comparable in price to the home micros that can be used to control them.

But even before prices fall, owners of MIDI-compatible musical equipment will find that a home computer and interface is a very attractive proposition. With suitable software a whole range of possibilities is opened up, and any number of dedicated addons can be imitated, at a fraction of the cost.

The built-in sound capabilities of the chosen home computer are not used at all when connected to MIDI-the sound is always generated by the synthesizer or drum machine-so there isn't really any point in purchasing an expensive microcomputer for use specifically with MIDI. It is interesting to realise that there is no real advantage in using expensive business computers over home computers. Even the extra memory offered by a business machine is largely superfluous, as the standard memory size of a home computer generally offers far more storage than any dedicated sequencer, for example. The message is that any computer that can have a MIDI interface attached is just as good as another, although it must be said that you may well find a 16 K Spectrum slightly limited in its storage capacity.

It's worth noting, too, that the sound quality available is not limited by the recording medium. Because the sound is stored digitally, it should be comparable with a medium like Compact Disc rather than, say, tape where all sorts of unwanted noise may be introduced. In other words, what comes out of a MIDI system is exactly what went in.

MIDI SOFTWARE

Once you have your computer hitched up via MIDI to your musical instrument, you'll need some software to make it all work. At present, the range is still restricted and comparable in price to some of the business software available for home computers. The situation will change as more and more people want to use MIDI.

Nonetheless, even within the restricted software range, there is software which will enable you to duplicate sequencers, compose multitrack music, and edit your tunes. Exactly what is on offer varies from manufacturer to manufacturer, and from computer to computer.

Although you may not be able to play a note on any musical instrument, you'll find that you can play music by composing on your computer's monitor, and sending the
information to the musical instrument to be played. The composition can also be stored on disk or tape for playing back or alteration at a later date. It has been predicted that some sheet music will be available on MIDI-coded EPROMs, so you can have either whole pieces of music which can be played back a little like a record or tape, or you could play along with an EPROM containing a backing track.

A typical MIDI software package is the music composer program which allows you to build up your piece on screen in much the same way as you would write it on paperadding notes to a musical staff. Full replay and editing facilities allow you to check your progress and make alterations to the music on screen as you go.

But it doesn't stop there, as good software should put all the features of the synthesizer at your disposal. You can control as many voices at once as there are voices on the synthesizer-a typical good-quality polyphonic keyboard synthesizer may be able to play as many as 16 notes together. You can select from the synthesizer's range of preset voices or blend new notes. If your synthesizer has split keyboard capability, you can even have two different instruments playing together-a melody and backing, perhaps. There are generally three types of information which you can send through the MIDInotes, program changes and pitchblend.

At present, there is a standard set of MIDI codes which work with any MIDIcompatible synthesizer. But these tend only to control the most basic functions available. Special features are accessed by special, extended code systems-and these usually vary from instrument to instrument. As a result, a complex, widely orchestrated composition may call for familiarity with a large number of MIDI codes, although this may well simplify considerably in future.

There's no reason why you should be discouraged from using MIDI, because you are a computer programmer rather than a musician. In some ways you have a positive advantage. If you can program in machine code there's nothing to stop you writing your own MIDI software, tailored to your own needs, and save the expense of buying commercial software.

MIDI seems to offer the musician and non-musician alike many new possibilities. As prices fall, musical instruments seem destined to find their way into far more homes-perhaps it'll be back to the old singsong evenings round the synthesizer! And you will have the opportunity of being really creative with your computer.

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

The final part of INPUT forms a complete index to your collection. There's a full list of all the articles that make up the course, plus a handy A-Z reference guide to all the subjects covered.

